Telegram Group & Telegram Channel
🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark



tg-me.com/sqlhub/1902
Create:
Last Update:

🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1902

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Data Science SQL hub from es


Telegram Data Science. SQL hub
FROM USA