Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/-34" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">AlphaZero</a> выходит из плена настольных игр<br/><br/>Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в <a href="https://t.me/knowledge_accumulator/16" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">рамках RL</a>, которая обычно не даёт такого профита, который позволяет <a href="https://t.me/knowledge_accumulator/9" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">компенсировать сложность подхода</a>. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.<br/><br/>Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в <a href="https://t.me/knowledge_accumulator/34" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">AlphaZero</a>, в ситуации, когда доступа к модели среды нет.<br/><br/>Что делают с проблемой сложности среды? Оказывается, можно просто <u>забить на состояния</u>, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает&#33; Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.<br/><br/>Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в <a href="https://t.me/knowledge_accumulator/22" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">RND</a>, <a href="https://t.me/knowledge_accumulator/26-): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/35 -
Telegram Group & Telegram Channel
MuZero [2020] - AlphaZero выходит из плена настольных игр

Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в рамках RL, которая обычно не даёт такого профита, который позволяет компенсировать сложность подхода. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.

Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в AlphaZero, в ситуации, когда доступа к модели среды нет.

Что делают с проблемой сложности среды? Оказывается, можно просто забить на состояния, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает! Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.

Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в RND, NGU, в MuZero и не только.
Глобально говоря, от этого имеет смысл отказываться всегда, когда генерация не является самоцелью. И я думаю, что это рано или поздно будут делать во всех доменах, даже в текстах.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/35
Create:
Last Update:

MuZero [2020] - AlphaZero выходит из плена настольных игр

Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в рамках RL, которая обычно не даёт такого профита, который позволяет компенсировать сложность подхода. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.

Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в AlphaZero, в ситуации, когда доступа к модели среды нет.

Что делают с проблемой сложности среды? Оказывается, можно просто забить на состояния, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает! Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.

Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в RND, NGU, в MuZero и не только.
Глобально говоря, от этого имеет смысл отказываться всегда, когда генерация не является самоцелью. И я думаю, что это рано или поздно будут делать во всех доменах, даже в текстах.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/35

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Knowledge Accumulator from es


Telegram Knowledge Accumulator
FROM USA