Telegram Group & Telegram Channel
🖥 Задача: "Кэширование и ленивые вычисления в многопоточном окружении"

🔜 Условие:

Вам нужно реализовать декоратор @thread_safe_cached, который:

- Кэширует результат вызова функции по её аргументам (аналог functools.lru_cache, но свой).
- Если несколько потоков одновременно вызывают функцию с одинаковыми аргументами:
- Только один поток реально выполняет функцию,
- Остальные ждут, пока результат будет вычислен, и получают готовый результат.
- Кэш никогда не удаляется (неограниченный размер).

Ограничения:

- Решение должно работать для произвольных функций и аргументов (hashable).
- Нельзя использовать готовый functools.lru_cache или другие библиотеки кэширования.
- Нужно обеспечить корректную работу в многопоточной среде без гонок данных.

---

▪️ Подсказки:

- Для кэширования подойдёт dict с ключами по аргументам (`*args`, `**kwargs`).
- Для защиты доступа к кэшу понадобится threading.Lock.
- Для ожидания завершения вычисления другими потоками можно использовать threading.Event.
- Продумайте carefully: как отличить "результат уже посчитан" от "результат в процессе вычисления".

---

▪️ Что оценивается:

- Умение работать с многопоточностью в Python.
- Правильная организация кэширования.
- Чистота и лаконичность кода.
- Умение обрабатывать тонкие случаи, например: одновременные вызовы.

---

▪️ Разбор возможного решения:

Основная идея:

- Создать кэш cache: Dict[Key, Result].
- Одновременно создать словарь "ожиданий" in_progress: Dict[Key, threading.Event].
- Если кто-то начал считать значение:
- Остальные ждут Event, пока оно не будет установлено.

Пример реализации:


import threading
import functools

def thread_safe_cached(func):
cache = {}
in_progress = {}
lock = threading.Lock()

@functools.wraps(func)
def wrapper(*args, **kwargs):
key = (args, frozenset(kwargs.items()))
with lock:
if key in cache:
return cache[key]
if key not in in_progress:
in_progress[key] = threading.Event()
in_progress[key].clear()
creator = True
else:
creator = False

if creator:
try:
result = func(*args, **kwargs)
with lock:
cache[key] = result
finally:
in_progress[key].set()
with lock:
del in_progress[key]
return result
else:
in_progress[key].wait()
with lock:
return cache[key]

return wrapper


---

▪️ Пояснения к коду:

- При первом вызове для новых аргументов поток создаёт Event и начинает считать результат.
- Остальные потоки видят Event и вызывают wait(), пока первый поток не установит set().
- Как только результат посчитан, Event сигнализирует всем ждущим потокам, что данные готовы.
- Доступ к cache и in_progress защищён через lock для избежания гонок.

---

▪️ Возможные подводные камни:

- Если не удалять Event из in_progress, кэш постепенно раздуется мусором.
- Если ошибка случится внутри func, необходимо всё равно освободить Event, иначе потоки будут вечно ждать.
- Нельзя держать lock во время выполнения тяжёлой функции func, иначе все потоки будут блокироваться.

---

▪️ Вопросы на собеседовании по этой задаче:

- Как изменить реализацию, чтобы кэш имел ограничение по размеру (например, максимум 1000 элементов)?
- Как адаптировать декоратор под асинхронные функции (`async def`)?
- Что будет, если func иногда бросает исключения? Как кэшировать ошибки или не кэшировать их?
- Как изменить реализацию так, чтобы кэш удалял устаревшие данные через TTL (Time-To-Live)?

---

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pythonl/4782
Create:
Last Update:

🖥 Задача: "Кэширование и ленивые вычисления в многопоточном окружении"

🔜 Условие:

Вам нужно реализовать декоратор @thread_safe_cached, который:

- Кэширует результат вызова функции по её аргументам (аналог functools.lru_cache, но свой).
- Если несколько потоков одновременно вызывают функцию с одинаковыми аргументами:
- Только один поток реально выполняет функцию,
- Остальные ждут, пока результат будет вычислен, и получают готовый результат.
- Кэш никогда не удаляется (неограниченный размер).

Ограничения:

- Решение должно работать для произвольных функций и аргументов (hashable).
- Нельзя использовать готовый functools.lru_cache или другие библиотеки кэширования.
- Нужно обеспечить корректную работу в многопоточной среде без гонок данных.

---

▪️ Подсказки:

- Для кэширования подойдёт dict с ключами по аргументам (`*args`, `**kwargs`).
- Для защиты доступа к кэшу понадобится threading.Lock.
- Для ожидания завершения вычисления другими потоками можно использовать threading.Event.
- Продумайте carefully: как отличить "результат уже посчитан" от "результат в процессе вычисления".

---

▪️ Что оценивается:

- Умение работать с многопоточностью в Python.
- Правильная организация кэширования.
- Чистота и лаконичность кода.
- Умение обрабатывать тонкие случаи, например: одновременные вызовы.

---

▪️ Разбор возможного решения:

Основная идея:

- Создать кэш cache: Dict[Key, Result].
- Одновременно создать словарь "ожиданий" in_progress: Dict[Key, threading.Event].
- Если кто-то начал считать значение:
- Остальные ждут Event, пока оно не будет установлено.

Пример реализации:


import threading
import functools

def thread_safe_cached(func):
cache = {}
in_progress = {}
lock = threading.Lock()

@functools.wraps(func)
def wrapper(*args, **kwargs):
key = (args, frozenset(kwargs.items()))
with lock:
if key in cache:
return cache[key]
if key not in in_progress:
in_progress[key] = threading.Event()
in_progress[key].clear()
creator = True
else:
creator = False

if creator:
try:
result = func(*args, **kwargs)
with lock:
cache[key] = result
finally:
in_progress[key].set()
with lock:
del in_progress[key]
return result
else:
in_progress[key].wait()
with lock:
return cache[key]

return wrapper


---

▪️ Пояснения к коду:

- При первом вызове для новых аргументов поток создаёт Event и начинает считать результат.
- Остальные потоки видят Event и вызывают wait(), пока первый поток не установит set().
- Как только результат посчитан, Event сигнализирует всем ждущим потокам, что данные готовы.
- Доступ к cache и in_progress защищён через lock для избежания гонок.

---

▪️ Возможные подводные камни:

- Если не удалять Event из in_progress, кэш постепенно раздуется мусором.
- Если ошибка случится внутри func, необходимо всё равно освободить Event, иначе потоки будут вечно ждать.
- Нельзя держать lock во время выполнения тяжёлой функции func, иначе все потоки будут блокироваться.

---

▪️ Вопросы на собеседовании по этой задаче:

- Как изменить реализацию, чтобы кэш имел ограничение по размеру (например, максимум 1000 элементов)?
- Как адаптировать декоратор под асинхронные функции (`async def`)?
- Что будет, если func иногда бросает исключения? Как кэшировать ошибки или не кэшировать их?
- Как изменить реализацию так, чтобы кэш удалял устаревшие данные через TTL (Time-To-Live)?

---

@pythonl

BY Python/ django


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonl/4782

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Python django from es


Telegram Python/ django
FROM USA