Telegram Group & Telegram Channel
Forwarded from Архив КС/РФ(Сиона-Футуриста) (Красный)
Последние годы интеллектуальные системы, основанные на машинном обучении были на пике хайпа. Как правило, именно их имеют ввиду, когда говорят об ИИ. Для пользователя, пользующегося умным программным продуктом, разницы между экспертными системами, построенными на основе базы знаний или же обработки бигдаты нет никакой. При этом, "под капотом" она принципиальна.

Классические экспертные системы выступают как хранилище знаний, созданных человеком. Системы на базе машинного обучения же, на основе некоторых математических манипуляций, извлекают новые, "нелюдские" правила обработки данных.

Системы на базе машинного обучения ощутимо быстрее в разработке: тут работает закон перехода количества в качество: рост объемов исходных данных и вычислительных мощностей дают возможность творить магию, затрачивая сравнительно меньше человеко-часов.

Специалисты по анализу данных универсальны: математическая подготовка и используемые инструменты более-менее универсальны во всех областях. Сегодня дата-саентист работает с рентгеновскими снимками, завтра делает систему ориентирования робота в пространстве. А суперкомпьютеру, на котором он экспериментирует вообще все равно что считать.

При разработке экспертной системе же требуется постоянный поиск высокооплачиваемых специалистов. После открытия нового направления экспертную группу можно менять в полном составе или удваивать личный состав.

Нейросеть, или другую модель, полученную при обучении отчасти можно назвать базой знаний, но логика ее работы совершенно непрозрачна — в отличии от экспертных систем, играющих по заданным правилам.

Системы на базе машинного обучения имеют неприятную особенность: они могут сходить с ума, как в результате стечения обстоятельств, так и по человеческому умыслу.

Потому в сердце систем, на которые завязаны жизнь и смерть человека, таких, как автопилот в автомобиле или ассистент врача, в обозримой перспективе будут классические экспертные системы. При этом "на периферии", в части взаимодействия с внешним миром, уже сейчас царство нейросетей, которые так и не превзошли в задачах класса "распознать силуэт человека во мраке".

Так что будущее мне видится в слиянии двух подходов — человеческого и машинного.

Eshu Marabo



tg-me.com/eshu_coding/133
Create:
Last Update:

Последние годы интеллектуальные системы, основанные на машинном обучении были на пике хайпа. Как правило, именно их имеют ввиду, когда говорят об ИИ. Для пользователя, пользующегося умным программным продуктом, разницы между экспертными системами, построенными на основе базы знаний или же обработки бигдаты нет никакой. При этом, "под капотом" она принципиальна.

Классические экспертные системы выступают как хранилище знаний, созданных человеком. Системы на базе машинного обучения же, на основе некоторых математических манипуляций, извлекают новые, "нелюдские" правила обработки данных.

Системы на базе машинного обучения ощутимо быстрее в разработке: тут работает закон перехода количества в качество: рост объемов исходных данных и вычислительных мощностей дают возможность творить магию, затрачивая сравнительно меньше человеко-часов.

Специалисты по анализу данных универсальны: математическая подготовка и используемые инструменты более-менее универсальны во всех областях. Сегодня дата-саентист работает с рентгеновскими снимками, завтра делает систему ориентирования робота в пространстве. А суперкомпьютеру, на котором он экспериментирует вообще все равно что считать.

При разработке экспертной системе же требуется постоянный поиск высокооплачиваемых специалистов. После открытия нового направления экспертную группу можно менять в полном составе или удваивать личный состав.

Нейросеть, или другую модель, полученную при обучении отчасти можно назвать базой знаний, но логика ее работы совершенно непрозрачна — в отличии от экспертных систем, играющих по заданным правилам.

Системы на базе машинного обучения имеют неприятную особенность: они могут сходить с ума, как в результате стечения обстоятельств, так и по человеческому умыслу.

Потому в сердце систем, на которые завязаны жизнь и смерть человека, таких, как автопилот в автомобиле или ассистент врача, в обозримой перспективе будут классические экспертные системы. При этом "на периферии", в части взаимодействия с внешним миром, уже сейчас царство нейросетей, которые так и не превзошли в задачах класса "распознать силуэт человека во мраке".

Так что будущее мне видится в слиянии двух подходов — человеческого и машинного.

Eshu Marabo

BY Эшу быдлокодит


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/eshu_coding/133

View MORE
Open in Telegram


Эшу быдлокодит Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Эшу быдлокодит from us


Telegram Эшу быдлокодит
FROM USA