Telegram Group & Telegram Channel
به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.tg-me.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff



tg-me.com/nlp_stuff/361
Create:
Last Update:

به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.tg-me.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/361

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

NLP stuff from fr


Telegram NLP stuff
FROM USA