Telegram Group & Telegram Channel
MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview



tg-me.com/machinelearning_interview/1568
Create:
Last Update:

MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1568

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Machine learning Interview from hk


Telegram Machine learning Interview
FROM USA