Telegram Group & Telegram Channel
Введение_в_автоматизированное_машинное_обучение_2023_RU_+_EN.zip
20.8 MB
📗 Введение в автоматизированное машинное обучение [2023] Хуттер, Коттхофф, Ваншорен.

Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника.

📘 Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.



tg-me.com/physics_lib/11731
Create:
Last Update:

📗 Введение в автоматизированное машинное обучение [2023] Хуттер, Коттхофф, Ваншорен.

Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника.

📘 Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/11731

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Physics Math Code from hk


Telegram Physics.Math.Code
FROM USA