Telegram Group & Telegram Channel
Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN



tg-me.com/ai_python_en/2186
Create:
Last Update:

Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN

BY AI, Python, Cognitive Neuroscience


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ai_python_en/2186

View MORE
Open in Telegram


AI Python Cognitive Neuroscience Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

AI Python Cognitive Neuroscience from id


Telegram AI, Python, Cognitive Neuroscience
FROM USA