Telegram Group & Telegram Channel
🛠️ История создания “storage-agnostic” message queue


Контекст:
Работая на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы.

Основная проблема


Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?

🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1) Worker pool — пул воркеров, обрабатывающих задачи
2) Queue interface — абстракция над очередью, не зависящая от реализации

Теперь воркер просто берёт задачи из очереди, не зная, где они хранятся.

🧠 Пример использования

• In-memory очередь:


w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


• С SQLite-поддержкой:


import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


• С Redis (для распределённой обработки):


import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища.

Почему это круто

• Гибкость: адаптеры позволяют легко менять хранилище без правок воркера
• Минимальные зависимости: в яд

📌 Читать



tg-me.com/sqlhub/1887
Create:
Last Update:

🛠️ История создания “storage-agnostic” message queue


Контекст:
Работая на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы.

Основная проблема


Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?

🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1) Worker pool — пул воркеров, обрабатывающих задачи
2) Queue interface — абстракция над очередью, не зависящая от реализации

Теперь воркер просто берёт задачи из очереди, не зная, где они хранятся.

🧠 Пример использования

• In-memory очередь:


w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


• С SQLite-поддержкой:


import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


• С Redis (для распределённой обработки):


import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища.

Почему это круто

• Гибкость: адаптеры позволяют легко менять хранилище без правок воркера
• Минимальные зависимости: в яд

📌 Читать

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1887

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Data Science SQL hub from id


Telegram Data Science. SQL hub
FROM USA