Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/github_code/337
Create:
Last Update:

🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP

BY Github





Share with your friend now:
tg-me.com/github_code/337

View MORE
Open in Telegram


Github Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Github from id


Telegram Github
FROM USA