Telegram Group & Telegram Channel
HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/117
Create:
Last Update:

HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/117

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Knowledge Accumulator from id


Telegram Knowledge Accumulator
FROM USA