Telegram Group & Telegram Channel
NumPy is a library for scientific computing in Python. It provides tools for working with arrays of data, including functions for mathematical operations, linear algebra, and random number generation.

👉🏻One of the key features of NumPy is its array data structure, which is similar to a list but allows for more efficient mathematical operations on large datasets. NumPy arrays can be created from existing data, such as lists or tuples, using the np.array() function.

👉🏻Once an array has been created, it can be manipulated using various NumPy functions. For example, the np.mean() function can be used to compute the mean of an array, and the np.random.rand() function can be used to generate random numbers.

👉🏻In addition to its array data structure, NumPy also provides a wide range of mathematical functions for working with arrays, such as linear algebra operations, statistical functions, and trigonometric functions. These functions can be applied to arrays element-wise, allowing for efficient computation on large datasets.

Overall, NumPy is a powerful library for working with arrays of data in Python, and is widely used in the fields of scientific computing, data science, and machine learning.

Share and Support
@Python_Codes



tg-me.com/python_codes/261
Create:
Last Update:

NumPy is a library for scientific computing in Python. It provides tools for working with arrays of data, including functions for mathematical operations, linear algebra, and random number generation.

👉🏻One of the key features of NumPy is its array data structure, which is similar to a list but allows for more efficient mathematical operations on large datasets. NumPy arrays can be created from existing data, such as lists or tuples, using the np.array() function.

👉🏻Once an array has been created, it can be manipulated using various NumPy functions. For example, the np.mean() function can be used to compute the mean of an array, and the np.random.rand() function can be used to generate random numbers.

👉🏻In addition to its array data structure, NumPy also provides a wide range of mathematical functions for working with arrays, such as linear algebra operations, statistical functions, and trigonometric functions. These functions can be applied to arrays element-wise, allowing for efficient computation on large datasets.

Overall, NumPy is a powerful library for working with arrays of data in Python, and is widely used in the fields of scientific computing, data science, and machine learning.

Share and Support
@Python_Codes

BY Python Codes


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_codes/261

View MORE
Open in Telegram


Python Codes Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Python Codes from id


Telegram Python Codes
FROM USA