Telegram Group & Telegram Channel
Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart



tg-me.com/opendatascience/2307
Create:
Last Update:

Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart

BY Data Science by ODS.ai 🦜






Share with your friend now:
tg-me.com/opendatascience/2307

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Data Science by ODS ai 🦜 from in


Telegram Data Science by ODS.ai 🦜
FROM USA