Telegram Group Search
World first: brain implant lets man speak with expression — and sing

tldr: implant enabled vocally impared person to speak

Source: https://www.nature.com/articles/d41586-025-01818-1

#implants #neurosquared #BCI
Please open Telegram to view this post
VIEW IN TELEGRAM
If you have worked with LLMs, you know how sharply and satisfyingly they grow stupid from large command windows. Mess up anything in the prompt—easy. Forget a chunk of text—easy. A large code-base? Forget it. That, by the way, underlies censorship bypasses, when a small censoring model is overloaded by a huge request and the larger primary one still executes it.

The attention mechanism is to blame—one of the pillars of their power to “think”. Now an architecture has been proposed that can do without it. Designed for gigantic tasks.


They propose to throw out attention. But not completely.

The foundation of a transformer is the self-attention mechanism. That is when each word in the text looks at every other word to grasp context.

It is like forming neural links between tokens. Very cool, strong, powerful, but it demands enormous computation.

Double the text length—get a stack overflow.

The Gemini command window is currently 1 million tokens (2 million on request), and that is still insufficient for real tasks. For example, rewriting “War and Peace”. Although real tasks are all somehow about war, without peace.

Instead of a word-to-word model, other approaches appear here:
— Cutting into chunks (for example, 2 048 words each). A cluster is formed, processed within itself, and builds neural links to other clusters. Hello, “Programming Pearls”; hello, Bentley.
— Blocks based on state-space models (SSM)—inside chunks blocks process words. This is like very smart convolutions. In essence, it is a filter deciding which neural connections to build. These operations run much faster than attention, almost linearly with chunk length.
— Multi-Resolution Convolution layers—inside each chunk after SSM are convolution layers with different strides. They let the model capture local patterns at various detail levels—from ties between neighbouring words to ties between words slightly farther apart inside the chunk. Thus every cluster is composed of clusters as well.
— Recurrent observer—outside all this sits a marvel with an attention mechanism. Another light model able to keep the continuous thread and pass information from one chunk to another (for example, a GRU or LSTM). It receives a summary (embed) of the current processed chunk and updates its internal global state, handing it to the next chunk. This helps maintain coherence across the whole long text.
— External memory with retrieval—for every processed chunk its compact representation is created. These representations are stored in an external memory database, brief summaries of their content. When the model processes a new chunk, it can query this memory to find representations of the most similar or relevant past chunks. The retrieved information is then added to the current chunk, enriching its context from the distant past without recomputing everything afresh. This introduces no quadratic operations.

This is not a total rejection of attention, but its limitation.
The recurrent observer still has attention, but it works at a higher level of abstraction, which is cheaper.
One can say it is an advanced RAG plus hierarchical processing.

This contraption should operate with near-linear growth of complexity.
Starting from a certain size it outperforms other transformers, including sparse ones (BigBird, Longformer), cache-based ones (Transformer-XL) and known non-transformer approaches such as retrieval models (REALM, RAG) and non-attention models (RNN, CNN, pure SSM like S4, Mamba).

Where it is needed:
— To extract meaning from a large mass of information, for example your entire personal correspondence, because you are tired of chasing links across chats;
— To answer questions over a large body of documentation;
— To work with a large code-base;
— And other ideas will come up.

In short, they removed token-to-token links and thus crossed the quadratic barrier of ordinary attention.
With this architecture one can find all the important things inside a block very closely and then hand them to attentive LLMs.
Forwarded from Machinelearning
🚀 Парадигма меняется: Polaris выводит локальные модели на новый уровень

Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).

Вот как это работает и почему важно:
Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными

Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.

“Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения

Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей

Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений

Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами

• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры


Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.


Blog post: https://hkunlp.github.io/blog/2025/Polaris
Model: https://huggingface.co/POLARIS-Project
Code: https://github.com/ChenxinAn-fdu/POLARIS
Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1

@ai_machinelearning_big_data

#ml #ai#Polaris #PostTraining #ReinforcementLearning #LLM
Forwarded from Sber AI
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Техножнец
Чем еще с вами поделиться, синтеты?

За почти 3 года увлечения темой Machine Learning очень многое удалось охватить и осознать. Есть огромный опыт в составлении кастомных архитектур под конкретные задачи, автоматизированные пайплайны по генерации датасетов для разных задач на основе ground truth или fully augmented (synthesised).

Когда сталкиваешься с интересным поведением людей, то уже рассматриваешь и общение с ними и другие взаимодействия с точки зрения предсказательной модели! Многие мультимодальности раскладываются в голове и начинаешь видеть связи… у некоторых людей начинаешь видеть бегущую строку на лбу, которая подсвечивает направление его вектора для поиска инфы…почти читаешь по бровям текущий ход или оригинальное па от собеседника в разговоре.

Иногда у некоторых людей хочется напрямую спросить, а, кхм… вы на каких датасетах обучались? Ну и выстраиваются ниточки ассоциативные…у меня есть люди знакомые, которые были натренированы на датасетах стандартных в предобучении, но потом они ушли в соцсетки и начали поглощать инструкции по общению совсем другого… не очень эффективного ракурса!

В интернете громкие мнения часто звучат не с твердой позиции убеждений, а скорее с позиции альфасамирования в сию-секундный момент! Отсюда и перенимание bias в общении!

Люди мало чем отличаются от языковых моделей в плане RLHF тренировки, т.к. они также берут готовые схемы от говорящих для них голов с экрана и ретранслируют это насколько им хватит параметров или токенизатора чтобы не исказить суть! Некоторые берут ростки мысли и аугментируют новый датасет и создают на вдохновении от других персонажей для себя новые вселенные знаний!

Это неизбежная профессиональная деформация, которая ведет к постоянному интересу - КАКОВ ТВОЙ ДАТАСЕТ?

Такие дела! Так и живем! У вас также?
Forwarded from Хитрый Питон
Недавно прошел Python Language Summit 2025 - начинаю разбирать интересные посты о том, что там обсуждали.

Мэт Пейдж рассказал о текущем состоянии и планах на free threading python (FTP):

- В 3.13 в однопоточном режиме потеря производительности была порядка 40% по сравнению с GIL-версией, сейчас ее удалось сократить до 7-8% и они планируют продолжать улучшать эти цифры. NoGIL версия пока потребляет на 20% больше памяти, но по его словам над решением этой проблемы уже начали работать
- Основные структурные изменения в python уже сделаны, теперь они сосредоточены на исправлении проблем и оптимизации
- По совместимости пакетов с free-threading режимом предстоит большая работа, пока только 60 из 360 самых популярных на pypi пакетов поддерживают этот режим
- На вопрос "как часто core-разработчики сейчас случайно ломают free-threading" Мэт ответил, что редко. Но сложность поддержки и развития python, конечно, возросла
- Пока thread-safe структуры данных не были фокусом, но работа уже начата, пока в формате библиотек и потом когда отработают - потащат в стандартную библиотеку, из интересного можно посмотреть на ft_utils например https://facebookincubator.github.io/ft_utils/

Подробнее можно почитать тут https://pyfound.blogspot.com/2025/06/python-language-summit-2025-state-of-free-threaded-python.html
Forwarded from Китай.AI
🛡️ CN-AI-ARSENAL | Технологический арсенал Китая

🚀 ROLL: новый фреймворк для масштабируемого обучения с подкреплением от Alibaba


Китайский гигант Alibaba представил ROLL — инновационный фреймворк для RL-тренировки больших языковых моделей (LLM), который уже собрал 1000+ звезд на GitHub. Это решение радикально упрощает процесс обучения с подкреплением, делая его доступным даже для небольших команд.

🔍 Ключевые возможности:
• Поддержка моделей до 600B+ параметров
• Встроенные алгоритмы: PPO, GRPO, Reinforce++
• Интеграция с vLLM, DeepSpeed, Megatron-Core
• Визуализация через wandb/tensorboard
• Ускорение обучения в 2.3-2.9 раза (тесты на Qwen-7B/30B)

💡 Для кого создан ROLL?
1) Инженеры: распределенные вычисления на тысячах GPU
2) Разработчики: гибкая настройка reward-функций
3) Исследователи: быстрый прототипинг новых алгоритмов

🌟 Технические детали:
- Rollout Scheduler для управления жизненным циклом samples
- AutoDeviceMapping для оптимизации ресурсов
- Параллельные стратегии обучения (5D-параллелизм)
- Асинхронные вычисления reward

GitHub | Технический отчет

#КитайскийИИ #КитайAI #RLHF #Alibaba
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Теперь официально Google выпустили Gemini CLI - AI-агента для работы в терминале

• Лёгкий и мощный инструмент для разработки в командной строке
• Работает на базе Gemini 2.5 Pro
• Код агента в открытом доступе (Apache 2.0)
• Поддержка контекста в 1 миллион токенов
• Бесплатный тариф: до 60 запросов в минуту и 1000 в день
Привязка к Google Search
• Поддержка MCP
• Интеграция с VS Code (Gemini Code Assist)

Запуск в cli: npx https://github.com/google-gemini/gemini-cli

🔜 Анонс: https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/
🔜 Github: https://github.com/google-gemini/gemini-cli/

@ai_machinelearning_big_data

#AI #ML #agent #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Техножнец
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/26 11:00:08
Back to Top
HTML Embed Code: