Telegram Group & Telegram Channel
A Modern Self-Referential Weight Matrix That Learns to Modify Itself [2022] - поговорим о странном

Существуют совсем альтернативные обучающиеся системы, не использующиеся на практике. Эта концепция довольно забавная и будет использоваться в следующем посте, поэтому давайте о ней поговорим.

У нас есть матрица весов W. На каждом шаге она получает на вход какой-то вектор x. Результирующий вектор Wx разбивается на части y, k, q, b.
- y - это выход модели
- k, q и b - величины, использующиеся, чтобы обновить матрицу W. В расчётах там используется внешнее произведение векторов k и Wq, чтобы получить сдвиг для матрицы W, b используется в качестве learning rate. Всё немного сложнее в реальности, но примерно так.

Таким образом, в одной матрице зашито всё - и веса, и обучающий алгоритм этих весов. Всё будущее поведение системы задаётся только инициализацией матрицы W.

Вы спросите - нахрена это надо? Расскажу, как в принципе это может работать.

Данная матрица может быть полноценным few-shot learning алгоритмом. Чтобы её натренировать, мы сэмплируем из датасета с картинками N объектов из K классов, подаём эти N*K образцов и ответов в систему по одному, а затем учимся предсказывать тестовые сэмплы, бэкпропом пробрасывая градиенты и обновляя инициализацию матрицы W. Так делаем много раз, и со временем W на новой задаче начинает неплохо работать. Но не лучше топовых few-shot подходов.

Настоящий взрыв мозга с этой штукой я расскажу в следующем посте, а пока всем хороших выходных 😁

@knowledge_accumulator



tg-me.com/knowledge_accumulator/86
Create:
Last Update:

A Modern Self-Referential Weight Matrix That Learns to Modify Itself [2022] - поговорим о странном

Существуют совсем альтернативные обучающиеся системы, не использующиеся на практике. Эта концепция довольно забавная и будет использоваться в следующем посте, поэтому давайте о ней поговорим.

У нас есть матрица весов W. На каждом шаге она получает на вход какой-то вектор x. Результирующий вектор Wx разбивается на части y, k, q, b.
- y - это выход модели
- k, q и b - величины, использующиеся, чтобы обновить матрицу W. В расчётах там используется внешнее произведение векторов k и Wq, чтобы получить сдвиг для матрицы W, b используется в качестве learning rate. Всё немного сложнее в реальности, но примерно так.

Таким образом, в одной матрице зашито всё - и веса, и обучающий алгоритм этих весов. Всё будущее поведение системы задаётся только инициализацией матрицы W.

Вы спросите - нахрена это надо? Расскажу, как в принципе это может работать.

Данная матрица может быть полноценным few-shot learning алгоритмом. Чтобы её натренировать, мы сэмплируем из датасета с картинками N объектов из K классов, подаём эти N*K образцов и ответов в систему по одному, а затем учимся предсказывать тестовые сэмплы, бэкпропом пробрасывая градиенты и обновляя инициализацию матрицы W. Так делаем много раз, и со временем W на новой задаче начинает неплохо работать. Но не лучше топовых few-shot подходов.

Настоящий взрыв мозга с этой штукой я расскажу в следующем посте, а пока всем хороших выходных 😁

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/86

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA