Telegram Group & Telegram Channel
πŸ–₯ SQL Flow

SQL Flow позиционируСтся ΠΊΠ°ΠΊ Β«DuckDB для ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…Β» β€” лёгковСсный Π΄Π²ΠΈΠΆΠΎΠΊ stream-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ вСсь pipeline СдинствСнным языком SQL ΠΈ слуТащий ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ Apache Flink.

πŸ” ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ возмоТности:

- Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ (Sources): Kafka, WebSocket-стримы, HTTP-webhooks ΠΈ Π΄Ρ€.
- ΠŸΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΈ (Sinks): Kafka, PostgreSQL, Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ S3-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°, Π»ΡŽΠ±Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ DuckDB (JSON, Parquet, Iceberg ΠΈ Ρ‚.Π΄.).
- SQL-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊ (Handler): встраиваСт DuckDB + Apache Arrow; ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹, ΠΎΠΊΠΎΠ½Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, UDF ΠΈ динамичСский Π²Ρ‹Π²ΠΎΠ΄ схСмы.
- Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΊΠ½Π°ΠΌΠΈ: in-memory tumbling-windows, Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.
- ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΠΎΡΡ‚ΡŒ: встроСнныС Prometheus-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ (с Ρ€Π΅Π»ΠΈΠ·Π° v0.6.0).

πŸ”— АрхитСктура

ΠšΠΎΠ½Π²Π΅ΠΉΠ΅Ρ€ описываСтся YAML-Ρ„Π°ΠΉΠ»ΠΎΠΌ с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ `source β†’ handler β†’ sink`.
Π’ΠΎ врСмя выполнСния:

1. Source считываСт ΠΏΠΎΡ‚ΠΎΠΊ (Kafka, WebSocket …).
2. Handler выполняСт SQL-Π»ΠΎΠ³ΠΈΠΊΡƒ Π² DuckDB.
3. Sink сохраняСт Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅.

βœ… Быстрый старт (β‰ˆ 5 ΠΌΠΈΠ½ΡƒΡ‚)


# ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·
docker pull turbolytics/sql-flow:latest

# тСстовая ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ
docker run -v $(pwd)/dev:/tmp/conf \
-v /tmp/sqlflow:/tmp/sqlflow \
turbolytics/sql-flow:latest \
dev invoke /tmp/conf/config/examples/basic.agg.yml /tmp/conf/fixtures/simple.json

# запуск ΠΏΡ€ΠΎΡ‚ΠΈΠ² Kafka
docker-compose -f dev/kafka-single.yml up -d # ΠΏΠΎΠ΄Π½ΡΡ‚ΡŒ Kafka

docker run -v $(pwd)/dev:/tmp/conf \
-e SQLFLOW_KAFKA_BROKERS=host.docker.internal:29092 \
turbolytics/sql-flow:latest \
run /tmp/conf/config/examples/basic.agg.mem.yml --max-msgs-to-process=10000


β–ͺ Github

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1874
Create:
Last Update:

πŸ–₯ SQL Flow

SQL Flow позиционируСтся ΠΊΠ°ΠΊ Β«DuckDB для ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…Β» β€” лёгковСсный Π΄Π²ΠΈΠΆΠΎΠΊ stream-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ вСсь pipeline СдинствСнным языком SQL ΠΈ слуТащий ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ Apache Flink.

πŸ” ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ возмоТности:

- Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ (Sources): Kafka, WebSocket-стримы, HTTP-webhooks ΠΈ Π΄Ρ€.
- ΠŸΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΈ (Sinks): Kafka, PostgreSQL, Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ S3-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°, Π»ΡŽΠ±Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ DuckDB (JSON, Parquet, Iceberg ΠΈ Ρ‚.Π΄.).
- SQL-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊ (Handler): встраиваСт DuckDB + Apache Arrow; ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹, ΠΎΠΊΠΎΠ½Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, UDF ΠΈ динамичСский Π²Ρ‹Π²ΠΎΠ΄ схСмы.
- Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΊΠ½Π°ΠΌΠΈ: in-memory tumbling-windows, Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.
- ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΠΎΡΡ‚ΡŒ: встроСнныС Prometheus-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ (с Ρ€Π΅Π»ΠΈΠ·Π° v0.6.0).

πŸ”— АрхитСктура

ΠšΠΎΠ½Π²Π΅ΠΉΠ΅Ρ€ описываСтся YAML-Ρ„Π°ΠΉΠ»ΠΎΠΌ с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ `source β†’ handler β†’ sink`.
Π’ΠΎ врСмя выполнСния:

1. Source считываСт ΠΏΠΎΡ‚ΠΎΠΊ (Kafka, WebSocket …).
2. Handler выполняСт SQL-Π»ΠΎΠ³ΠΈΠΊΡƒ Π² DuckDB.
3. Sink сохраняСт Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅.

βœ… Быстрый старт (β‰ˆ 5 ΠΌΠΈΠ½ΡƒΡ‚)


# ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·
docker pull turbolytics/sql-flow:latest

# тСстовая ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ
docker run -v $(pwd)/dev:/tmp/conf \
-v /tmp/sqlflow:/tmp/sqlflow \
turbolytics/sql-flow:latest \
dev invoke /tmp/conf/config/examples/basic.agg.yml /tmp/conf/fixtures/simple.json

# запуск ΠΏΡ€ΠΎΡ‚ΠΈΠ² Kafka
docker-compose -f dev/kafka-single.yml up -d # ΠΏΠΎΠ΄Π½ΡΡ‚ΡŒ Kafka

docker run -v $(pwd)/dev:/tmp/conf \
-e SQLFLOW_KAFKA_BROKERS=host.docker.internal:29092 \
turbolytics/sql-flow:latest \
run /tmp/conf/config/examples/basic.agg.mem.yml --max-msgs-to-process=10000


β–ͺ Github

@sqlhub

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1874

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even β€œYesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Data Science SQL hub from it


Telegram Data Science. SQL hub
FROM USA