Telegram Group & Telegram Channel
VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/83
Create:
Last Update:

VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/83

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Knowledge Accumulator from it


Telegram Knowledge Accumulator
FROM USA