Telegram Group & Telegram Channel
قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/it/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff



tg-me.com/nlp_stuff/312
Create:
Last Update:

قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/it/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/312

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

NLP stuff from it


Telegram NLP stuff
FROM USA