Telegram Group & Telegram Channel
NumPy tricks for beginners :

πŸ‘‰ Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes



tg-me.com/python_codes/263
Create:
Last Update:

NumPy tricks for beginners :

πŸ‘‰ Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes

BY Python Codes


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_codes/263

View MORE
Open in Telegram


Python Codes Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless β€œ$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Python Codes from it


Telegram Python Codes
FROM USA