Telegram Group & Telegram Channel
Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/219
Create:
Last Update:

Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/219

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Knowledge Accumulator from jp


Telegram Knowledge Accumulator
FROM USA