Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/-34" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">AlphaZero</a> выходит из плена настольных игр<br/><br/>Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в <a href="https://t.me/knowledge_accumulator/16" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">рамках RL</a>, которая обычно не даёт такого профита, который позволяет <a href="https://t.me/knowledge_accumulator/9" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">компенсировать сложность подхода</a>. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.<br/><br/>Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в <a href="https://t.me/knowledge_accumulator/34" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">AlphaZero</a>, в ситуации, когда доступа к модели среды нет.<br/><br/>Что делают с проблемой сложности среды? Оказывается, можно просто <u>забить на состояния</u>, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает&#33; Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.<br/><br/>Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в <a href="https://t.me/knowledge_accumulator/22" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">RND</a>, <a href="https://t.me/knowledge_accumulator/26-): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/35 -
Telegram Group & Telegram Channel
MuZero [2020] - AlphaZero выходит из плена настольных игр

Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в рамках RL, которая обычно не даёт такого профита, который позволяет компенсировать сложность подхода. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.

Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в AlphaZero, в ситуации, когда доступа к модели среды нет.

Что делают с проблемой сложности среды? Оказывается, можно просто забить на состояния, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает! Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.

Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в RND, NGU, в MuZero и не только.
Глобально говоря, от этого имеет смысл отказываться всегда, когда генерация не является самоцелью. И я думаю, что это рано или поздно будут делать во всех доменах, даже в текстах.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/35
Create:
Last Update:

MuZero [2020] - AlphaZero выходит из плена настольных игр

Попытка моделировать динамику среды (то, какими состояние и награда у среды будут следующими, если знаем текущее состояние и действие агента) - это отдельная песня в рамках RL, которая обычно не даёт такого профита, который позволяет компенсировать сложность подхода. Всё потому, что генерировать состояния слишком трудно из-за неопределённости в среде и высокой размерности состояния.

Тем не менее, в рамках MuZero пытаются применить подход к выбору действий с помощью планирования, как в AlphaZero, в ситуации, когда доступа к модели среды нет.

Что делают с проблемой сложности среды? Оказывается, можно просто забить на состояния, и при обучении своей модели динамики среды пытаться предсказывать только будущие награды и действия нашей стратегии. Ведь чтобы их предсказывать, нужно извлечь всё самое полезное из динамики и не более. Удивительно, но это работает! Более того, эта система может играть в Го на уровне AlphaZero, у которой доступ к модели есть.

Я думаю, что отказ от попытки предсказывать будущее состояние это верно, потому что убирает ненужную сложность. От этого отказались в RND, NGU, в MuZero и не только.
Глобально говоря, от этого имеет смысл отказываться всегда, когда генерация не является самоцелью. И я думаю, что это рано или поздно будут делать во всех доменах, даже в текстах.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/35

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Knowledge Accumulator from jp


Telegram Knowledge Accumulator
FROM USA