Telegram Group & Telegram Channel
AlphaTensor [2022] - пример сверхчеловеческой интуиции в математике

Подход "поиск + нейросетевая интуиция" позволил AlphaZero планировать в играх с помощью с обученной на огромном разнообразном датасете аппроксиматором функции полезности, позволившим радикально сократить пространство перебора.

Оказывается, существуют области, полезные в жизни, где мы понимаем, как применить такой подход на текущем этапе развития технологий. Такой областью является перемножение матриц!

Говоря общими словами (глубокий часовой обзор есть тут):
1) Наша задача - разработать алгоритм, который можно применить к 2 матрицам, чтобы получить в результате их произведение.
2) Мы работаем с пространством алгоритмов, которые задаются последовательностью векторов-параметров. Эти векторы-параметры говорят нам (хитро), что на что умножать и что с чем складывать.
3) В терминах RL действиями являются эти векторы, наградой является то, насколько близкий результат будет давать алгоритм (со штрафом за кол-во действий), а состоянием среды является размерность матриц и прошлые действия.

К этому всему мы применяем в точности AlphaZero - нужно только реализовать "RL-среду" по правилам выше. В результате обучения алгоритм находит более быстрые способы перемножать матрицы, чем знало человечество!

Я в восторге от результатов данной работы, потому что система демонстрирует сверхчеловеческое понимание своей задачи, а я люблю такое. Она способна смотреть на данные той размерности, которые мы не способны воспринимать. Результаты на картинке говорят, что чем больше размерность, тем больше отрыв между ней и нами. Такие вот дела!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/39
Create:
Last Update:

AlphaTensor [2022] - пример сверхчеловеческой интуиции в математике

Подход "поиск + нейросетевая интуиция" позволил AlphaZero планировать в играх с помощью с обученной на огромном разнообразном датасете аппроксиматором функции полезности, позволившим радикально сократить пространство перебора.

Оказывается, существуют области, полезные в жизни, где мы понимаем, как применить такой подход на текущем этапе развития технологий. Такой областью является перемножение матриц!

Говоря общими словами (глубокий часовой обзор есть тут):
1) Наша задача - разработать алгоритм, который можно применить к 2 матрицам, чтобы получить в результате их произведение.
2) Мы работаем с пространством алгоритмов, которые задаются последовательностью векторов-параметров. Эти векторы-параметры говорят нам (хитро), что на что умножать и что с чем складывать.
3) В терминах RL действиями являются эти векторы, наградой является то, насколько близкий результат будет давать алгоритм (со штрафом за кол-во действий), а состоянием среды является размерность матриц и прошлые действия.

К этому всему мы применяем в точности AlphaZero - нужно только реализовать "RL-среду" по правилам выше. В результате обучения алгоритм находит более быстрые способы перемножать матрицы, чем знало человечество!

Я в восторге от результатов данной работы, потому что система демонстрирует сверхчеловеческое понимание своей задачи, а я люблю такое. Она способна смотреть на данные той размерности, которые мы не способны воспринимать. Результаты на картинке говорят, что чем больше размерность, тем больше отрыв между ней и нами. Такие вот дела!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/39

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Knowledge Accumulator from jp


Telegram Knowledge Accumulator
FROM USA