Telegram Group & Telegram Channel
📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7740
Create:
Last Update:

📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI

BY Machinelearning








Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7740

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Machinelearning from jp


Telegram Machinelearning
FROM USA