Telegram Group & Telegram Channel
آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pytorch_howsam/640
Create:
Last Update:

آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.

BY PyTorch Howsam




Share with your friend now:
tg-me.com/pytorch_howsam/640

View MORE
Open in Telegram


PyTorch Howsam Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

PyTorch Howsam from jp


Telegram PyTorch Howsam
FROM USA