Telegram Group & Telegram Channel
🤖 AlexNet: butun AI tarixini o'zgartirgan model

Avvalgi postlarimdan birida ResNet haqida gaplashgandik: bu neyron tarmoqlarni chuqurroq qilishga yordam beradigan usul edi. Bugun esa AI tarixida Computer Vision (CV) yo'nalishida revolyutsiya qilgan model haqida gaplashamiz, ya'ni AlexNet haqida.

Hozir hamma AI modellar aksariyati neyron tarmoqlariga asoslangan arxitekturalar ustiga qurilgan. Ko'proq ma'lumot bersangiz, kuchliroq ishlaydi. Lekin, 1990-2010 yillar orasida neyron tarmoqlari boshqa Machine Learning (ML) algoritmlaridan yaxshiroq emas edi 🤧, masalan kernel regression, SVM, AdaBoost, va hokazo. Xususan, CV uchun olimlar ko'pincha qo'lda features tayyorlashar edi: SIFT, SURF, HoG va shunga o'xshash. Feature'larni to'g'ridan to'g'ri avtomatik ravishda ma'lumotdan o'rganish g'oyasi uncha tadqiqotchilar jamiyati orasida keng tarqalmagan edi.

2011-yilda Geoffrey Hinton (menimcha kimligini yaxshi bilsangiz kerak) o'z hamkasblariga shunday murojat bilan chiqdi: "Sizlarni neyron tarmoqlari kelajak ekaniga ishontirishim uchun nima qilishim kerak". Shunda uning tanishlaridan biri ImageNet deb nomlangan rasmlar to'plamini tavsiya qiladi.

📸 ImageNet Stanford Professori Fei-Fei Li boshchiligida 2007-yildan boshlab 14 mln'dan ortiq rasm yig'ib kelar edi, va 22 mingta kategoriyalarga tartiblagan, va bu dataset neyron tarmoqga asoslangan CV modellarni o'rgatishga juda zo'r massiv dataset bo'lgan.

Ilya Sutskever (OpenAI asoschilaridan biri) va Alex Krijevskiy (AlexNet'ning muallifi) Geoffrey Hinton qo'l ostida PhD studentlar bo'lib o'qishar edi. Krijevskiy kichik modellarni CIFAR-10 dataset'ida o'qitish uchun cuda-convnet kutubhonasini yozgan edi. Sutskever Alex'ning GPU programming bo'yicha kuchliligini bilib, uni ImageNet yourdamida kattaroq model o'qitishga ishontiradi. Shunday qilib, Krijevskiy ko'p GPU mashg'ulotlari uchun `cuda-convnet`-ni kengaytiradi. AlexNet 2 ta Nvidia GTX 580 da o'zining ota-onasining uyidagi yotoqxonasida o'qitilgan.

2012 yil davomida Krijevskiy tarmoqda giperparametrlarni optimallashtirishni amalga oshiradi, va u o'sha yilning oxirida ImageNet tanlovida g'olib chiqadi. Hinton shunday izoh beradi: "Ilya biz buni qilishimiz kerak deb o'yladi, Alex buni amalga oshirdi va men Nobel mukofotini oldim".😊

2012-yilda CV bo'yicha ECCV konferentsiyasida AlexNet g'alabasidan so'ng tadqiqotchi Yann LeKun modelni “bu CV tarixidagi aniq burilish nuqtasi” deb ta'riflaydi.🤩

AlexNetning 2012-yildagi muvaffaqiyati oldingi o'n yil ichida yetuk bo'lgan uchta narsani birlashgani bilan amalga oshdi:
1. Katta miqyosdagi ma'lumotlar to'plamlari
2. Umumiy maqsadli GPU hisoblashlari (GPGPU), ya'ni Nvidia CUDA tehnologiyasi.
3. Chuqur neyron tarmoqlar uchun takomillashtirilgan o'qitish usullari.

O'n yildan ko'proq vaqt o'tgach, uning ahamiyati haqida fikr yuritar ekan, Fei-Fei Li 2024-yildagi intervyusida shunday deydi: "O'sha lahza sun'iy intellekt dunyosi uchun juda ramziy edi, chunki zamonaviy AI'ning uchta asosiy elementi birinchi marta birlashgan". 🥳

@kilich_bek_blog
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/Conordevs_Blogs/332
Create:
Last Update:

🤖 AlexNet: butun AI tarixini o'zgartirgan model

Avvalgi postlarimdan birida ResNet haqida gaplashgandik: bu neyron tarmoqlarni chuqurroq qilishga yordam beradigan usul edi. Bugun esa AI tarixida Computer Vision (CV) yo'nalishida revolyutsiya qilgan model haqida gaplashamiz, ya'ni AlexNet haqida.

Hozir hamma AI modellar aksariyati neyron tarmoqlariga asoslangan arxitekturalar ustiga qurilgan. Ko'proq ma'lumot bersangiz, kuchliroq ishlaydi. Lekin, 1990-2010 yillar orasida neyron tarmoqlari boshqa Machine Learning (ML) algoritmlaridan yaxshiroq emas edi 🤧, masalan kernel regression, SVM, AdaBoost, va hokazo. Xususan, CV uchun olimlar ko'pincha qo'lda features tayyorlashar edi: SIFT, SURF, HoG va shunga o'xshash. Feature'larni to'g'ridan to'g'ri avtomatik ravishda ma'lumotdan o'rganish g'oyasi uncha tadqiqotchilar jamiyati orasida keng tarqalmagan edi.

2011-yilda Geoffrey Hinton (menimcha kimligini yaxshi bilsangiz kerak) o'z hamkasblariga shunday murojat bilan chiqdi: "Sizlarni neyron tarmoqlari kelajak ekaniga ishontirishim uchun nima qilishim kerak". Shunda uning tanishlaridan biri ImageNet deb nomlangan rasmlar to'plamini tavsiya qiladi.

📸 ImageNet Stanford Professori Fei-Fei Li boshchiligida 2007-yildan boshlab 14 mln'dan ortiq rasm yig'ib kelar edi, va 22 mingta kategoriyalarga tartiblagan, va bu dataset neyron tarmoqga asoslangan CV modellarni o'rgatishga juda zo'r massiv dataset bo'lgan.

Ilya Sutskever (OpenAI asoschilaridan biri) va Alex Krijevskiy (AlexNet'ning muallifi) Geoffrey Hinton qo'l ostida PhD studentlar bo'lib o'qishar edi. Krijevskiy kichik modellarni CIFAR-10 dataset'ida o'qitish uchun cuda-convnet kutubhonasini yozgan edi. Sutskever Alex'ning GPU programming bo'yicha kuchliligini bilib, uni ImageNet yourdamida kattaroq model o'qitishga ishontiradi. Shunday qilib, Krijevskiy ko'p GPU mashg'ulotlari uchun `cuda-convnet`-ni kengaytiradi. AlexNet 2 ta Nvidia GTX 580 da o'zining ota-onasining uyidagi yotoqxonasida o'qitilgan.

2012 yil davomida Krijevskiy tarmoqda giperparametrlarni optimallashtirishni amalga oshiradi, va u o'sha yilning oxirida ImageNet tanlovida g'olib chiqadi. Hinton shunday izoh beradi: "Ilya biz buni qilishimiz kerak deb o'yladi, Alex buni amalga oshirdi va men Nobel mukofotini oldim".😊

2012-yilda CV bo'yicha ECCV konferentsiyasida AlexNet g'alabasidan so'ng tadqiqotchi Yann LeKun modelni “bu CV tarixidagi aniq burilish nuqtasi” deb ta'riflaydi.🤩

AlexNetning 2012-yildagi muvaffaqiyati oldingi o'n yil ichida yetuk bo'lgan uchta narsani birlashgani bilan amalga oshdi:
1. Katta miqyosdagi ma'lumotlar to'plamlari
2. Umumiy maqsadli GPU hisoblashlari (GPGPU), ya'ni Nvidia CUDA tehnologiyasi.
3. Chuqur neyron tarmoqlar uchun takomillashtirilgan o'qitish usullari.

O'n yildan ko'proq vaqt o'tgach, uning ahamiyati haqida fikr yuritar ekan, Fei-Fei Li 2024-yildagi intervyusida shunday deydi: "O'sha lahza sun'iy intellekt dunyosi uchun juda ramziy edi, chunki zamonaviy AI'ning uchta asosiy elementi birinchi marta birlashgan". 🥳

@kilich_bek_blog

BY Conor's Blogs







Share with your friend now:
tg-me.com/Conordevs_Blogs/332

View MORE
Open in Telegram


Conor& 39;s Blogs Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Conor& 39;s Blogs from kr


Telegram Conor's Blogs
FROM USA