Telegram Group & Telegram Channel
The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [2024] - так что, трансформеры работают на ARC?

Вы могли читать в соседних каналах о том, что LLM смогли приспособить для решения ARC - теста на способность распознавать и применять паттерны по нескольким обучающим примерам. Многие топовые решения основываются на поиске программ, тогда как применение GPT-4 / o1 даёт весьма скромный результат.

В данной работе авторы добавили в LLM-пайплайн несколько улучшений, позволивших получить результат в 62% - число, немного превышающее Avg. Human. Давайте разберёмся, как к этому пришли.

Изначальную LLama файнтюнят с помощью так называемого ReARC - датасету из искусственно сгенерированных задач. Чтобы их получить, был выписан набор элементарных трансформаций над плоскостями, из которых составлялись задачи и образцы. Из этого добра составлялись сэмплы для few-shot in-context обучения. Она решает 5 задач из 80.

Далее наступает Test-Time Training. Получив датасет из N тренировочных пар вход-выход, мы строим следующий датасет для In-Context Learning:

1) Берём каждый из N сэмплов и превращаем в таргет для in-context обучения, т.е. подаём на вход N-1 сэмплов с таргетами и предсказываем N-ный выход.
2) Обкладываем всё дата-аугментациями - симметрии, повороты, перемешивание тренировочных пар, скейлинг. Молимся, чтобы это не повлияло на задачу.
3) Дополнительно, обучаемся предсказывать таргеты со 2-го по N-1-й, это в статье называют Demonstration loss.

Обучаем LoRA (малопараметрический файнтюн) на каждую отдельную задачку в ARC на описанном выше датасете. Во время тестирования, применяем аугментации к задаче и потом ревёрсим обратно предсказанный ответ. Для выбора 2 финальных ответов проводятся выборы. Всё это в сумме даёт 29 задач из 80. Давайте глянем на Ablation:

1) Если обучать одну LoRA на все задачи - 22 / 80
2) Если не применять дата-аугментации - 13 / 80
3) Если вместо хитрого in-context test-time training просто файнтюнить на N сэмплах - 18 / 80
4) Если не файнтюнить модель на ReARC - 9 / 80
5) Если попросить GPT-4o сгенерировать ARC задачи для файнтюна и добавить к ReARC - 24 / 80 😁

Все эти замеры проводились на основе LLama-1B, Llama-8B даёт уже 36 из 80 - результат в 45%. А откуда же взялся результат в 62%? Для этого авторы совместили свою статью с другим подходом - статьёй BARC, про которую я расскажу в следующий раз. Применяя test-time training к нейросети из BARC, получается 53%. Чтобы получить 62%, нужно ансамблировать решение с синтезатором программ.

Интересно, какой был бы результат у всего этого на реальном тестовом ARC-датасете. Могу поверить, что какой-то близкий к этому числу, но теоретически возможны и лики. Всё-таки, авторы тюнили все детали своего подхода на наборе из 80 задач, кроме того, датасет для файтнюна (без которого это почти не работает) теоретически мог содержать операции, слишком близкие к public validation. Именно эти опасности и устраняются наличием полностью секретного тестового датасета.

О том, что нам этот результат даёт в более широком контексте. мы поговорим потом, а пока что просто порадуемся за команду.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/237
Create:
Last Update:

The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [2024] - так что, трансформеры работают на ARC?

Вы могли читать в соседних каналах о том, что LLM смогли приспособить для решения ARC - теста на способность распознавать и применять паттерны по нескольким обучающим примерам. Многие топовые решения основываются на поиске программ, тогда как применение GPT-4 / o1 даёт весьма скромный результат.

В данной работе авторы добавили в LLM-пайплайн несколько улучшений, позволивших получить результат в 62% - число, немного превышающее Avg. Human. Давайте разберёмся, как к этому пришли.

Изначальную LLama файнтюнят с помощью так называемого ReARC - датасету из искусственно сгенерированных задач. Чтобы их получить, был выписан набор элементарных трансформаций над плоскостями, из которых составлялись задачи и образцы. Из этого добра составлялись сэмплы для few-shot in-context обучения. Она решает 5 задач из 80.

Далее наступает Test-Time Training. Получив датасет из N тренировочных пар вход-выход, мы строим следующий датасет для In-Context Learning:

1) Берём каждый из N сэмплов и превращаем в таргет для in-context обучения, т.е. подаём на вход N-1 сэмплов с таргетами и предсказываем N-ный выход.
2) Обкладываем всё дата-аугментациями - симметрии, повороты, перемешивание тренировочных пар, скейлинг. Молимся, чтобы это не повлияло на задачу.
3) Дополнительно, обучаемся предсказывать таргеты со 2-го по N-1-й, это в статье называют Demonstration loss.

Обучаем LoRA (малопараметрический файнтюн) на каждую отдельную задачку в ARC на описанном выше датасете. Во время тестирования, применяем аугментации к задаче и потом ревёрсим обратно предсказанный ответ. Для выбора 2 финальных ответов проводятся выборы. Всё это в сумме даёт 29 задач из 80. Давайте глянем на Ablation:

1) Если обучать одну LoRA на все задачи - 22 / 80
2) Если не применять дата-аугментации - 13 / 80
3) Если вместо хитрого in-context test-time training просто файнтюнить на N сэмплах - 18 / 80
4) Если не файнтюнить модель на ReARC - 9 / 80
5) Если попросить GPT-4o сгенерировать ARC задачи для файнтюна и добавить к ReARC - 24 / 80 😁

Все эти замеры проводились на основе LLama-1B, Llama-8B даёт уже 36 из 80 - результат в 45%. А откуда же взялся результат в 62%? Для этого авторы совместили свою статью с другим подходом - статьёй BARC, про которую я расскажу в следующий раз. Применяя test-time training к нейросети из BARC, получается 53%. Чтобы получить 62%, нужно ансамблировать решение с синтезатором программ.

Интересно, какой был бы результат у всего этого на реальном тестовом ARC-датасете. Могу поверить, что какой-то близкий к этому числу, но теоретически возможны и лики. Всё-таки, авторы тюнили все детали своего подхода на наборе из 80 задач, кроме того, датасет для файтнюна (без которого это почти не работает) теоретически мог содержать операции, слишком близкие к public validation. Именно эти опасности и устраняются наличием полностью секретного тестового датасета.

О том, что нам этот результат даёт в более широком контексте. мы поговорим потом, а пока что просто порадуемся за команду.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/237

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Knowledge Accumulator from kr


Telegram Knowledge Accumulator
FROM USA