Telegram Group & Telegram Channel
πŸ–₯ Skorch позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ PyTorch с интСрфСйсом, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ scikit-learn (Sklearn). Π­Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡŽ PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈ понятнСС, особСнно для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ Π·Π½Π°ΠΊΠΎΠΌ с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модСли на PyTorch
lr=0.001, # Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния
batch_size=64, # Π Π°Π·ΠΌΠ΅Ρ€ Π±Π°Ρ‚Ρ‡Π°
criterion=nn.CrossEntropyLoss, # Ѐункция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ
optimizer=optim.Adam # ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€
)


Π—Π΄Π΅ΡΡŒ создаётся ΠΎΠ±Ρ‘Ρ€Ρ‚ΠΊΠ° NeuralNetClassifier, которая Π΄Π΅Π»Π°Π΅Ρ‚ модСль PyTorch совмСстимой с .fit(), .predict() ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Sklearn.

πŸ“ŒΠžΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅:


model.fit(X_train, y_train)
Π’Ρ‹ ΠΎΠ±ΡƒΡ‡Π°Π΅ΡˆΡŒ модСль Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² Sklearn. Π­Ρ‚ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ написания собствСнного Ρ†ΠΈΠΊΠ»Π° обучСния.


Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Skorch Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΡˆΡŒ:

- ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Sklearn-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ API для PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ;

- автоматичСский Π²Ρ‹Π²ΠΎΠ΄ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ обучСния;

- Π»Ρ‘Π³ΠΊΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с GridSearchCV, Pipeline ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ инструмСнтами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1793
Create:
Last Update:

πŸ–₯ Skorch позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ PyTorch с интСрфСйсом, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ scikit-learn (Sklearn). Π­Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡŽ PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈ понятнСС, особСнно для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ Π·Π½Π°ΠΊΠΎΠΌ с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модСли на PyTorch
lr=0.001, # Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния
batch_size=64, # Π Π°Π·ΠΌΠ΅Ρ€ Π±Π°Ρ‚Ρ‡Π°
criterion=nn.CrossEntropyLoss, # Ѐункция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ
optimizer=optim.Adam # ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€
)


Π—Π΄Π΅ΡΡŒ создаётся ΠΎΠ±Ρ‘Ρ€Ρ‚ΠΊΠ° NeuralNetClassifier, которая Π΄Π΅Π»Π°Π΅Ρ‚ модСль PyTorch совмСстимой с .fit(), .predict() ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Sklearn.

πŸ“ŒΠžΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅:


model.fit(X_train, y_train)
Π’Ρ‹ ΠΎΠ±ΡƒΡ‡Π°Π΅ΡˆΡŒ модСль Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² Sklearn. Π­Ρ‚ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ написания собствСнного Ρ†ΠΈΠΊΠ»Π° обучСния.


Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Skorch Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΡˆΡŒ:

- ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Sklearn-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ API для PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ;

- автоматичСский Π²Ρ‹Π²ΠΎΠ΄ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ обучСния;

- Π»Ρ‘Π³ΠΊΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с GridSearchCV, Pipeline ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ инструмСнтами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1793

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Machine learning Interview from kr


Telegram Machine learning Interview
FROM USA