Telegram Group & Telegram Channel
عمرتان زیادی کرده که دکترا بخوانید؟

این
هفته آقای لکان (یکی از سه‌ خدای دیپ‌لرنینگ) توییتی زده و به مورد Aditya Ramesh اشاره کرد. فردی که لیسانسش رو از دانشگاه NYU گرفته و قصد داشت تا وارد دوره دکتری شود اما با یک کارآموزی در OpenAI مسیرش تغییر کرده و در آن جا مانده و در نهایت با مدرک لیسانس تبدیل به نویسنده اصلی مقاله مدل معروف Dall-E می‌شود.

آقای بهنام نیشابور محقق گوگل هم توییت لکان را کوت کرده و نکات ریزتری برای تایید "نباید برای یادگیری ماشین دکترا خواند" به آن اضافه کرده است. نکته اصلی که تحصیلات تکمیلی برای زمینه‌ای مثل ML آورریتد است. چرا؟ چون که یک نفر بدون هیچ گونه پیش زمینه خاصی می‌تواند به این فیلد وارد شده و با اندکی وقت گذاشتن، حتی می‌تواند به راحتی در کنفرانس‌های مطرح دنیا مقاله‌ای چاپ کند. منابع آموزشی ML روز به روز گسترده‌تر و در دسترس‌تر می‌شوند و واقعا لازم نیست کسی برای وارد شدن به وادی پژوهشگری یادگیری ماشین بیاید و ۵ الی ۶ سال از عمرش را در ارشد یا دکتری هدر دهد. (و خودمانیم، رشته‌‌هایی مثل فیزیک را با ML مقایسه کنید. طرف در فیزیک تا بخواهد به جایی برسید باید مو سفید کند اما امروزه از صفر تا صد ماشین لرنینگ را با این تئوری‌های آبکی که دارد می‌توان در کمتر از دو سال طی نمود)

نکته‌ دیگری که آقای نیشابور اشاره کرده است این است که تعداد موقعیت‌های دکترای یادگیری ماشین روز به روز بیشتر می‌‌شود اما از آن طرف تعداد شغل‌هایی که به مدرک دکتری یادگیری ماشین نیاز دارد در آینده روز به روز کمتر می‌شود. در واقع با داشتن دکتری شما over-qualified می‌شوید و از طرف دیگر هم مگر آکادمی چه قدر موقعیت شغلی می‌تواند داشته باشد؟ در مقابل، صنعت اما بیش از ML Researcher به ML Engineer‌ها نیازمند است. کسی که بتواند چیزی را واقعا بسازد. دوره دکتری باعث دوری نسبی از شما صنعت و مهارت‌های آن خواهد شد. آقای نیشابور در انتها به نتایج تحقیقی اشاره کرده که در آن گفته شده درصد زیادی از دانشجویان تحصیلات تکمیلی دچار افسردگی و اضطراب شدید هستند.

نکته دیگری که ما به صحبت‌های بالا اضافه می‌توانیم بکنیم این است که جایگاه متفاوت یادگیری ماشین و به طور عام هوش مصنوعی نسبت به سایر علوم را باید در نظر گرفت. هوش مصنوعی در مدت ۷۰ سال اخیری که از خدا عمر گرفته است، همچنان حوزه یکپارچه‌ای نبوده است. هر از چند گاهی ایده‌ای آمده است و با هوش مصنوعی وارد بهاری شده و در نهایت در زمستانی دفن شده است. گاهی منطق‌دان‌ها به آن وارد شده‌اند و با دیدشان روش‌های سیستم‌های خبره و منطق را برای هوش مصنوعی توسعه داده‌اند. گاهی برقی‌ها وارد شده‌اند و مفاهیم سیگنالی را در حوزه هوش مصنوعی غالب کرده‌اند و این اواخر هم ریاضی‌دان‌ها و آماردان‌ها وارد شده و پارادایم یادگیری ماشین را پادشاه هوش مصنوعی کرده‌اند. از حدود ۲۰۱۲ به این ور هم شبکه‌های دیپ (شاید مدیون پیشرفت‌‌های سخت‌افزاری) فرمان بازی را به دست گرفته و بهاری‌ترین دوران هوش مصنوعی را رقم زده‌اند. اما واقعیت این است که یادگیری عمیق نیز اکنون احتمالا وارد پاییز خود شده است (در این مورد در آینده احتمالا صحبت می‌کنیم). مسیر تحقیقاتی هوش مصنوعی و یادگیری ماشین احتمال دارد به زودی دوباره وارد زمستان سخت شده و تمامی سرمایه‌گذاری‌های تحقیقاتی بسوزند. البته که بحث دنیای صنعت فرق می‌کند و همین الان بسیاری راه‌حل‌های یافت شده در دنیای آکادمی آماده هستند تا به دنیای صنعت و کاربرد اعمال شوند. در همین راستا شاید پیشنهاد ML Engineer شدن به جای ML Researcher شدن پیشنهاد عافیت داری برای دین و دنیا باشد. برای حسن ختام به قول سعدی:
کرامت جوانمردی و نان‌دهی است
مقالات بیهوده طبل تهی است

پی‌نوشت: البته اگر در بلاد کفر نیستید قاعدتا برای رسیدن به جایی مانند گوگل یا کوچکتر از آن مسیری جز اپلای تحصیلی برای ساختن رزومه و تقویت حلقه تاثیر شاید نیست. بحث کلی این است که در شرایط عادی، دکترای یادگیری ماشین معنی چندانی در دنیای امروز ندارد.

لینک توییت لکان:
https://twitter.com/ylecun/status/1605450677806895104

لینک توییت نیشابور:
https://twitter.com/bneyshabur/status/1605677285255675904

#tweet
#read

@nlp_stuff



tg-me.com/nlp_stuff/314
Create:
Last Update:

عمرتان زیادی کرده که دکترا بخوانید؟

این
هفته آقای لکان (یکی از سه‌ خدای دیپ‌لرنینگ) توییتی زده و به مورد Aditya Ramesh اشاره کرد. فردی که لیسانسش رو از دانشگاه NYU گرفته و قصد داشت تا وارد دوره دکتری شود اما با یک کارآموزی در OpenAI مسیرش تغییر کرده و در آن جا مانده و در نهایت با مدرک لیسانس تبدیل به نویسنده اصلی مقاله مدل معروف Dall-E می‌شود.

آقای بهنام نیشابور محقق گوگل هم توییت لکان را کوت کرده و نکات ریزتری برای تایید "نباید برای یادگیری ماشین دکترا خواند" به آن اضافه کرده است. نکته اصلی که تحصیلات تکمیلی برای زمینه‌ای مثل ML آورریتد است. چرا؟ چون که یک نفر بدون هیچ گونه پیش زمینه خاصی می‌تواند به این فیلد وارد شده و با اندکی وقت گذاشتن، حتی می‌تواند به راحتی در کنفرانس‌های مطرح دنیا مقاله‌ای چاپ کند. منابع آموزشی ML روز به روز گسترده‌تر و در دسترس‌تر می‌شوند و واقعا لازم نیست کسی برای وارد شدن به وادی پژوهشگری یادگیری ماشین بیاید و ۵ الی ۶ سال از عمرش را در ارشد یا دکتری هدر دهد. (و خودمانیم، رشته‌‌هایی مثل فیزیک را با ML مقایسه کنید. طرف در فیزیک تا بخواهد به جایی برسید باید مو سفید کند اما امروزه از صفر تا صد ماشین لرنینگ را با این تئوری‌های آبکی که دارد می‌توان در کمتر از دو سال طی نمود)

نکته‌ دیگری که آقای نیشابور اشاره کرده است این است که تعداد موقعیت‌های دکترای یادگیری ماشین روز به روز بیشتر می‌‌شود اما از آن طرف تعداد شغل‌هایی که به مدرک دکتری یادگیری ماشین نیاز دارد در آینده روز به روز کمتر می‌شود. در واقع با داشتن دکتری شما over-qualified می‌شوید و از طرف دیگر هم مگر آکادمی چه قدر موقعیت شغلی می‌تواند داشته باشد؟ در مقابل، صنعت اما بیش از ML Researcher به ML Engineer‌ها نیازمند است. کسی که بتواند چیزی را واقعا بسازد. دوره دکتری باعث دوری نسبی از شما صنعت و مهارت‌های آن خواهد شد. آقای نیشابور در انتها به نتایج تحقیقی اشاره کرده که در آن گفته شده درصد زیادی از دانشجویان تحصیلات تکمیلی دچار افسردگی و اضطراب شدید هستند.

نکته دیگری که ما به صحبت‌های بالا اضافه می‌توانیم بکنیم این است که جایگاه متفاوت یادگیری ماشین و به طور عام هوش مصنوعی نسبت به سایر علوم را باید در نظر گرفت. هوش مصنوعی در مدت ۷۰ سال اخیری که از خدا عمر گرفته است، همچنان حوزه یکپارچه‌ای نبوده است. هر از چند گاهی ایده‌ای آمده است و با هوش مصنوعی وارد بهاری شده و در نهایت در زمستانی دفن شده است. گاهی منطق‌دان‌ها به آن وارد شده‌اند و با دیدشان روش‌های سیستم‌های خبره و منطق را برای هوش مصنوعی توسعه داده‌اند. گاهی برقی‌ها وارد شده‌اند و مفاهیم سیگنالی را در حوزه هوش مصنوعی غالب کرده‌اند و این اواخر هم ریاضی‌دان‌ها و آماردان‌ها وارد شده و پارادایم یادگیری ماشین را پادشاه هوش مصنوعی کرده‌اند. از حدود ۲۰۱۲ به این ور هم شبکه‌های دیپ (شاید مدیون پیشرفت‌‌های سخت‌افزاری) فرمان بازی را به دست گرفته و بهاری‌ترین دوران هوش مصنوعی را رقم زده‌اند. اما واقعیت این است که یادگیری عمیق نیز اکنون احتمالا وارد پاییز خود شده است (در این مورد در آینده احتمالا صحبت می‌کنیم). مسیر تحقیقاتی هوش مصنوعی و یادگیری ماشین احتمال دارد به زودی دوباره وارد زمستان سخت شده و تمامی سرمایه‌گذاری‌های تحقیقاتی بسوزند. البته که بحث دنیای صنعت فرق می‌کند و همین الان بسیاری راه‌حل‌های یافت شده در دنیای آکادمی آماده هستند تا به دنیای صنعت و کاربرد اعمال شوند. در همین راستا شاید پیشنهاد ML Engineer شدن به جای ML Researcher شدن پیشنهاد عافیت داری برای دین و دنیا باشد. برای حسن ختام به قول سعدی:
کرامت جوانمردی و نان‌دهی است
مقالات بیهوده طبل تهی است

پی‌نوشت: البته اگر در بلاد کفر نیستید قاعدتا برای رسیدن به جایی مانند گوگل یا کوچکتر از آن مسیری جز اپلای تحصیلی برای ساختن رزومه و تقویت حلقه تاثیر شاید نیست. بحث کلی این است که در شرایط عادی، دکترای یادگیری ماشین معنی چندانی در دنیای امروز ندارد.

لینک توییت لکان:
https://twitter.com/ylecun/status/1605450677806895104

لینک توییت نیشابور:
https://twitter.com/bneyshabur/status/1605677285255675904

#tweet
#read

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/314

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

NLP stuff from ms


Telegram NLP stuff
FROM USA