Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/tensorflowblog/455
Create:
Last Update:

🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA

BY TensorFlow








Share with your friend now:
tg-me.com/tensorflowblog/455

View MORE
Open in Telegram


TensorFlow Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even β€œYesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Launched in 2013, Telegram allows users to broadcast messages to a following via β€œchannels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.TensorFlow from ms


Telegram TensorFlow
FROM USA