Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 34 in /var/www/tg-me/post.php on line 75
Neural Networks | Нейронные сети | Telegram Webview: neural/9849 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Ctrl-X: генерация T2I по структурным и визуальным референсам без необходимости обучения.

trl-X - метод, который позволяет управлять структурой и внешним видом изображений, создаваемых диффузионными моделями без необходимости дополнительного обучения или использования инструкций.

Ctrl-X предлагает управляемую генерацию, разделяя ее на две основные составляющие: сохранение пространственной структуры и семантически-осведомленный перенос стиля.

Для управления структурой используется прямая инъекция признаков сверточных слоев и карт внимания из входного изображения, который задает структуру.

Для переноса внешнего вида c входного источника применяется метод, основанный на статистике признаков, который учитывает пространственное соответствие между исходным и генерируемым изображениями.

Анализ карт внимания позволяет выявить семантические соответствия между ними и перенести стилистические характеристики с учетом их пространственного расположения.

Метод Ctrl-X не привязан к конкретным моделям и может применяться к любым диффузионным моделям T2I (текст-изображение) и T2V (текст-видео).

Программная реализация Ctrl-X на модели Stable Diffusion XL 1.0 поддерживает запуск с Gradio UI и инференс в CLI.

В обоих типах запуска Ctrl-X (Gradio и CLI) предусмотрена возможность оптимизации потребления VRAM : ключи запуска cpu_offload и disable_refiner.

Примерная утилизация VRAM для Gradio с использованием оптимизации выглядит следующим образом:

🟠no flags - 19 GB VRAM;

🟢cpu_offload - 13GB VRAM;

🟠disable_refiner - 15GB VRAM;

🟢cpu_offload + disable_refiner - 8 GB VRAM.

▶️Установка и запуск с Gradio или CLI:

# Clone the repository
git clone https://github.com/genforce/ctrl-x.git

# Create Conda environment
conda env create -f environment.yaml
conda activate ctrlx

# Run Gradio Demo
python app_ctrlx.py

# or run CLI inference
python run_ctrlx.py \
--structure_image assets/images/horse__point_cloud.jpg \
--appearance_image assets/images/horse.jpg \
--prompt "a photo of a horse standing on grass" \
--structure_prompt "a 3D point cloud of a horse"



🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusers #CtrlX
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/neural/9849
Create:
Last Update:

🌟 Ctrl-X: генерация T2I по структурным и визуальным референсам без необходимости обучения.

trl-X - метод, который позволяет управлять структурой и внешним видом изображений, создаваемых диффузионными моделями без необходимости дополнительного обучения или использования инструкций.

Ctrl-X предлагает управляемую генерацию, разделяя ее на две основные составляющие: сохранение пространственной структуры и семантически-осведомленный перенос стиля.

Для управления структурой используется прямая инъекция признаков сверточных слоев и карт внимания из входного изображения, который задает структуру.

Для переноса внешнего вида c входного источника применяется метод, основанный на статистике признаков, который учитывает пространственное соответствие между исходным и генерируемым изображениями.

Анализ карт внимания позволяет выявить семантические соответствия между ними и перенести стилистические характеристики с учетом их пространственного расположения.

Метод Ctrl-X не привязан к конкретным моделям и может применяться к любым диффузионным моделям T2I (текст-изображение) и T2V (текст-видео).

Программная реализация Ctrl-X на модели Stable Diffusion XL 1.0 поддерживает запуск с Gradio UI и инференс в CLI.

В обоих типах запуска Ctrl-X (Gradio и CLI) предусмотрена возможность оптимизации потребления VRAM : ключи запуска cpu_offload и disable_refiner.

Примерная утилизация VRAM для Gradio с использованием оптимизации выглядит следующим образом:

🟠no flags - 19 GB VRAM;

🟢cpu_offload - 13GB VRAM;

🟠disable_refiner - 15GB VRAM;

🟢cpu_offload + disable_refiner - 8 GB VRAM.

▶️Установка и запуск с Gradio или CLI:

# Clone the repository
git clone https://github.com/genforce/ctrl-x.git

# Create Conda environment
conda env create -f environment.yaml
conda activate ctrlx

# Run Gradio Demo
python app_ctrlx.py

# or run CLI inference
python run_ctrlx.py \
--structure_image assets/images/horse__point_cloud.jpg \
--appearance_image assets/images/horse.jpg \
--prompt "a photo of a horse standing on grass" \
--structure_prompt "a 3D point cloud of a horse"



🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusers #CtrlX

BY Neural Networks | Нейронные сети







Share with your friend now:
tg-me.com/neural/9849

View MORE
Open in Telegram


Neural Networks | Нейронные сети Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Neural Networks | Нейронные сети from us


Telegram Neural Networks | Нейронные сети
FROM USA