Telegram Group & Telegram Channel
Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN



tg-me.com/ai_python_en/2186
Create:
Last Update:

Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN

BY AI, Python, Cognitive Neuroscience


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ai_python_en/2186

View MORE
Open in Telegram


AI Python Cognitive Neuroscience Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

AI Python Cognitive Neuroscience from nl


Telegram AI, Python, Cognitive Neuroscience
FROM USA