Telegram Group & Telegram Channel
MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview



tg-me.com/machinelearning_interview/1567
Create:
Last Update:

MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1567

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Machine learning Interview from nl


Telegram Machine learning Interview
FROM USA