👨🎓Более 500 школьников выпустились из кружков по подготовке к всероссийским олимпиадам “Т-Поколение”
В этом году выпускной “Т-Поколения” прошел в московской штаб-квартире Т-Банка для более чем 200 ребят, их родителей и учителей из Москвы, Ижевска, Иннополиса, Челябинска и других городов страны.
Кружки “Т-Поколение” от Т-Банка включают в себя бесплатную подготовку к Всероссийским олимпиадам школьников по математике и информатике, а также Национальной олимпиаде по анализу данных DANO и Международной олимпиаде по промышленной разработке PROD. Обучение велось очно и онлайн. Преподаватели кружков — победители и жюри Всероссийских и Международных олимпиад по математике и информатике, тренеры сборных команд и эксперты Т-Банка, среди которых – Антон Белый, тренер российской сборной к IOI и Александр Горбунов, тренер сборной Москвы ко Всероссийской олимпиаде школьников, разработчик Т-Банка.
С момента запуска “Т-Поколения” в 2018 году выпускниками кружков стали более 10 000 человек, 544 из них выиграли или стали призерами Всероссийских олимпиад школьников по математике и информатике.
▪️Выпускники кружков этого года получили возможность по упрощенному отбору поступить в Центральный университет — российский инновационный вуз, внедряющий в высшее образование STEM-подход (Science, Technology, Engineering, and Mathematics).
▪️83 одиннадцатиклассника, которые успешно прошли обучение в кружках и стали победителями и призерами ВсОШ по математике и информатике, стали стипендиатами Т-Банка. Компания в течение всего следующего учебного года будет выплачивать им по 25 000 рублей при условии поступления в российский вуз .
#математика #факты #задачи #science #видеоуроки #олимпиады #problems #science #math
💡 Physics.Math.Code // @physics_lib
В этом году выпускной “Т-Поколения” прошел в московской штаб-квартире Т-Банка для более чем 200 ребят, их родителей и учителей из Москвы, Ижевска, Иннополиса, Челябинска и других городов страны.
Кружки “Т-Поколение” от Т-Банка включают в себя бесплатную подготовку к Всероссийским олимпиадам школьников по математике и информатике, а также Национальной олимпиаде по анализу данных DANO и Международной олимпиаде по промышленной разработке PROD. Обучение велось очно и онлайн. Преподаватели кружков — победители и жюри Всероссийских и Международных олимпиад по математике и информатике, тренеры сборных команд и эксперты Т-Банка, среди которых – Антон Белый, тренер российской сборной к IOI и Александр Горбунов, тренер сборной Москвы ко Всероссийской олимпиаде школьников, разработчик Т-Банка.
С момента запуска “Т-Поколения” в 2018 году выпускниками кружков стали более 10 000 человек, 544 из них выиграли или стали призерами Всероссийских олимпиад школьников по математике и информатике.
▪️Выпускники кружков этого года получили возможность по упрощенному отбору поступить в Центральный университет — российский инновационный вуз, внедряющий в высшее образование STEM-подход (Science, Technology, Engineering, and Mathematics).
▪️83 одиннадцатиклассника, которые успешно прошли обучение в кружках и стали победителями и призерами ВсОШ по математике и информатике, стали стипендиатами Т-Банка. Компания в течение всего следующего учебного года будет выплачивать им по 25 000 рублей при условии поступления в российский вуз .
#математика #факты #задачи #science #видеоуроки #олимпиады #problems #science #math
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🧪 Опыты с лазером и жидкостями различной плотности могут демонстрировать преломление света на границе сред с разной оптической плотностью. Это явление, при котором луч света меняет направление при переходе из одной среды в другую, зависит от разницы показателей преломления.
Примеры опытов:
▪️Опыт с аквариумом и сахаром. Дно аквариума покрывают слоем кубиков рафинада, затем осторожно вливают воду, чтобы жидкость почти не перемешивалась. Аквариум оставляют в тихом месте на сутки: за это время сахар полностью расходится, причём концентрация молекул у дна оказывается выше, чем ближе к поверхности.
▪️Опыт с раствором поваренной соли и водой. В кювету, на дне которой лежит зеркало, сначала заливают раствор поваренной соли, затем медленно и осторожно, по лезвию ножа, наливают поверх солевого раствора воду. Если сделать это осторожно, то граница раздела будет чёткой, а смешивание жидкостей минимальным.
▪️Опыт с неравномерно нагретой водой. Раствор воды снизу охлаждают кубиками льда, а вверху прогревают лампой накаливания. Лазерный луч отклоняется в сторону менее нагретой жидкости.
▪️Опыт с неравномерно нагретой водой при наличии поверхностного нефтяного слоя. В том же растворе воды, который снизу охлаждают, сверху прогревают лампой, есть слой сырой нефти с показателем преломления 1,49. Лазерный луч не отклоняется в сторону менее нагретой жидкости из-за большой оптической плотности и коэффициента светопоглощения нефти.
#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
Примеры опытов:
▪️Опыт с аквариумом и сахаром. Дно аквариума покрывают слоем кубиков рафинада, затем осторожно вливают воду, чтобы жидкость почти не перемешивалась. Аквариум оставляют в тихом месте на сутки: за это время сахар полностью расходится, причём концентрация молекул у дна оказывается выше, чем ближе к поверхности.
▪️Опыт с раствором поваренной соли и водой. В кювету, на дне которой лежит зеркало, сначала заливают раствор поваренной соли, затем медленно и осторожно, по лезвию ножа, наливают поверх солевого раствора воду. Если сделать это осторожно, то граница раздела будет чёткой, а смешивание жидкостей минимальным.
▪️Опыт с неравномерно нагретой водой. Раствор воды снизу охлаждают кубиками льда, а вверху прогревают лампой накаливания. Лазерный луч отклоняется в сторону менее нагретой жидкости.
▪️Опыт с неравномерно нагретой водой при наличии поверхностного нефтяного слоя. В том же растворе воды, который снизу охлаждают, сверху прогревают лампой, есть слой сырой нефти с показателем преломления 1,49. Лазерный луч не отклоняется в сторону менее нагретой жидкости из-за большой оптической плотности и коэффициента светопоглощения нефти.
#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Сдаешь ЕГЭ в 2026 году? Тогда читай внимательно! 👨🎓
Мы — Профиматика, онлайн-школа по подготовке учеников 10 и 11 классов к успешной сдаче ЕГЭ на 90+ по математике с индивидуальным подходом к каждому.
Мы знаем, что твой путь в 11 класс начинается уже сейчас. И у тебя может быть 100500 вопросов:
🔸 Как правильно начать готовиться к ЕГЭ?
🔸 Когда это лучше делать: сейчас или можно потом?
🔸 Как выбрать вуз, куда точно возьмут?
🔸 Сколько баллов нужно набрать, чтобы пройти на бюджет?
🔸 Какие предметы выбрать, если нравится одно, а хорошо получается другое?
... и еще много других... 😵💫
Мы знаем, что тебе может быть сложно!
Только 83% учеников начинают задумываться об этом осенью, и больше 50% из них теряют баллы на ЕГЭ из-за нехватки
времени на подготовку!
Мы решили тебе помочь!
🔤 🔤 🔤 Лови 3 БЕСПЛАТНЫХ файла, которые помогут тебе сориентироваться при подготовке к ЕГЭ 2026 по профильной математике! ✨
Переходи по ссылке, жми «начать» — и мы отправим тебе эти файлы в ЛС
https://th.link/Xz48L
🚩 Определиться с будущей профессией
🚩 Выбрать вуз мечты и предметы для подготовке к ЕГЭ
🚩 Разобраться со шкалой ЕГЭ и понять, сколько баллов нужно именно тебе.
Забирай файлики скорее⬇️
https://th.link/Xz48L
Мы — Профиматика, онлайн-школа по подготовке учеников 10 и 11 классов к успешной сдаче ЕГЭ на 90+ по математике с индивидуальным подходом к каждому.
Мы знаем, что твой путь в 11 класс начинается уже сейчас. И у тебя может быть 100500 вопросов:
🔸 Как правильно начать готовиться к ЕГЭ?
🔸 Когда это лучше делать: сейчас или можно потом?
🔸 Как выбрать вуз, куда точно возьмут?
🔸 Сколько баллов нужно набрать, чтобы пройти на бюджет?
🔸 Какие предметы выбрать, если нравится одно, а хорошо получается другое?
Мы знаем, что тебе может быть сложно!
Только 83% учеников начинают задумываться об этом осенью, и больше 50% из них теряют баллы на ЕГЭ из-за нехватки
времени на подготовку!
Мы решили тебе помочь!
Переходи по ссылке, жми «начать» — и мы отправим тебе эти файлы в ЛС
https://th.link/Xz48L
Забирай файлики скорее
https://th.link/Xz48L
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».
В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 С увеличением частоты вращения диска с магнитами наблюдается интересный эффект: ферромагнитная жидкость начинает вращаться в противоположную сторону. Связано это с тем, что достигается необходимое смещение фазы, когда предыдущая «пучность» жидкости (сгусток ферро-частиц) оказывается ближе к магниту, приближающемуся сзади, чем к магниту, который ушел вперед. Происходит смещение фаз, жидкость начинает вращаться в противоположную сторону. Иногда такой же эффект наблюдается оптике (Смотри Муаровые узоры).
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib