Telegram Group & Telegram Channel
Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN



tg-me.com/ai_python_en/2186
Create:
Last Update:

Named Entity Recognition (NER) from social media posts is a challenging task. User-generated content which forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. However some applications like automatic journalism or information retrieval from social media, require more information about entities mentioned in groups of social media posts. Conventional methods applied to structured and well typed documents provide acceptable results while compared to new user generated media, these methods are not satisfactory. One valuable piece of information about an entity is the related image to the text. Combining this multimodal data reduces ambiguity and provides wider information about the entities mentioned. In order to address this issue, we propose a novel deep learning approach utilizing multimodal deep learning. Our solution is able to provide more accurate results on named entity recognition task. Experimental results, namely the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

https://arxiv.org/abs/2001.06888

❇️ @AI_Python_EN

BY AI, Python, Cognitive Neuroscience


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ai_python_en/2186

View MORE
Open in Telegram


AI Python Cognitive Neuroscience Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

AI Python Cognitive Neuroscience from no


Telegram AI, Python, Cognitive Neuroscience
FROM USA