Telegram Group & Telegram Channel
🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!



tg-me.com/machinelearning_interview/1787
Create:
Last Update:

🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1787

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Machine learning Interview from no


Telegram Machine learning Interview
FROM USA