Telegram Group & Telegram Channel
Напишу немного про проклятье размерности. Это термин, которым, в частности, называют странности многомерных пространств, от которых человеческая интуиция начинает давать сбои.

Один популярный пример выглядит так: возьмём квадрат на плоскости и впишем в него круг. Ясно, что круг закроет большую часть площади квадрата. Дальше, возьмём куб и впишем в него шар. Опять же, шар займёт большую часть объёма куба. Но вот в четырёхмерном случае гиперсфера займёт меньше трети объёма гиперкуба, а при дальнейшем повышении размерности отношение их объёмов сходится к нулю. При этом евклидово расстояние от центра n-мерного куба до любого из его 2^n углов растёт как sqrt(n), т.е. неограниченно; а основной объём пространства (т.е., например, основная часть равномерно случайно взятых точек) внутри такого куба оказывается на расстоянии от центра с матожиданием sqrt(n/3) и с убывающей к нулю дисперсией. Короче, n-мерный куб — это очень странное место, с кучей углов и пустым центром.

Другой пример — гипотеза Борсука о возможности разбиения n-мерного тела диаметром 1 на n+1 тел диаметром меньше 1. Она доказана для n<=3 и опровергнута для n>=64. Посредине — томящая неизвестность.

Всё это обычно выглядит как игры разума, не отягощённого бытовыми мелочами, однако бум нейросетей принес нам популярность всяких многомерных эмбеддингов и представлений — слов, текстов или картинок, и там такие пакости случаются регулярно. Недавно, в одной из задач мне пришлось столкнуться с такой штукой:

Возьмём, скажем, 100-мерное пространство и выберем в нём равномерно случайно из единичного гиперкуба 42 точки. Пронумеруем их в некотором случайном, но фиксированном порядке, от 1 до 42. Какова вероятность, что в нашем пространстве найдётся такая ось, в проекции на которую наши точки выстроятся в нужном порядке? Ответ: больше 99%. Кому интересно, можете посмотреть мой скрипт на питоне, которым это эмпирически можно проверить (работает довольно долго, решает системы линейных неравенств, пересекая полупространства для каждой пары точек).



tg-me.com/pathetic_low_freq/397
Create:
Last Update:

Напишу немного про проклятье размерности. Это термин, которым, в частности, называют странности многомерных пространств, от которых человеческая интуиция начинает давать сбои.

Один популярный пример выглядит так: возьмём квадрат на плоскости и впишем в него круг. Ясно, что круг закроет большую часть площади квадрата. Дальше, возьмём куб и впишем в него шар. Опять же, шар займёт большую часть объёма куба. Но вот в четырёхмерном случае гиперсфера займёт меньше трети объёма гиперкуба, а при дальнейшем повышении размерности отношение их объёмов сходится к нулю. При этом евклидово расстояние от центра n-мерного куба до любого из его 2^n углов растёт как sqrt(n), т.е. неограниченно; а основной объём пространства (т.е., например, основная часть равномерно случайно взятых точек) внутри такого куба оказывается на расстоянии от центра с матожиданием sqrt(n/3) и с убывающей к нулю дисперсией. Короче, n-мерный куб — это очень странное место, с кучей углов и пустым центром.

Другой пример — гипотеза Борсука о возможности разбиения n-мерного тела диаметром 1 на n+1 тел диаметром меньше 1. Она доказана для n<=3 и опровергнута для n>=64. Посредине — томящая неизвестность.

Всё это обычно выглядит как игры разума, не отягощённого бытовыми мелочами, однако бум нейросетей принес нам популярность всяких многомерных эмбеддингов и представлений — слов, текстов или картинок, и там такие пакости случаются регулярно. Недавно, в одной из задач мне пришлось столкнуться с такой штукой:

Возьмём, скажем, 100-мерное пространство и выберем в нём равномерно случайно из единичного гиперкуба 42 точки. Пронумеруем их в некотором случайном, но фиксированном порядке, от 1 до 42. Какова вероятность, что в нашем пространстве найдётся такая ось, в проекции на которую наши точки выстроятся в нужном порядке? Ответ: больше 99%. Кому интересно, можете посмотреть мой скрипт на питоне, которым это эмпирически можно проверить (работает довольно долго, решает системы линейных неравенств, пересекая полупространства для каждой пары точек).

BY Жалкие низкочастотники


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 280

Share with your friend now:
tg-me.com/pathetic_low_freq/397

View MORE
Open in Telegram


Жалкие низкочастотники Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Жалкие низкочастотники from us


Telegram Жалкие низкочастотники
FROM USA