Telegram Group & Telegram Channel
Media is too big
VIEW IN TELEGRAM
🌐 Математическая загадка: сфера и 5 точек на поверхности

Если на поверхности сферы есть 5 точек, то существует замкнутая полусфера, содержащая по крайней мере 4 из них.

Задача: На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
б) Та же задача для n отмеченных точек.

Решение:
а) Перейдём к двойственным объектам: каждой окружности соответствует такая пара противоположных точек сферы, что соединяющий их диаметр перпендикулярен этой окружности; наоборот, каждой точке соответствует большая окружность. Тогда задача сводится к двойственной: точки считаются эквивалентными, если можно одну перевести в другую, не задевая пяти данных больших окружностей (никакие три из которых не пересекаются в одной точке). Очевидно, точку можно перемещать в пределах области, на которые большие окружности делят сферу. Таким образом, число классов эквивалентности в два раза меньше числа частей, на которые большие окружности делят сферу (противоположным частям соответствует один класс, так как исходной большой окружности в двойственной задаче соответствуют две диаметрально противоположные точки).
Учтем, что n наших больших окружностей делят сферу на n² – n + 2 части. В частности, пять окружностей разобьют сферу на 22 части. А ответ, как показано выше, в два раза меньше.
б) см. а)

#геометрия #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #math

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/physics_lib/14133
Create:
Last Update:

🌐 Математическая загадка: сфера и 5 точек на поверхности

Если на поверхности сферы есть 5 точек, то существует замкнутая полусфера, содержащая по крайней мере 4 из них.

Задача: На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
б) Та же задача для n отмеченных точек.

Решение:
а) Перейдём к двойственным объектам: каждой окружности соответствует такая пара противоположных точек сферы, что соединяющий их диаметр перпендикулярен этой окружности; наоборот, каждой точке соответствует большая окружность. Тогда задача сводится к двойственной: точки считаются эквивалентными, если можно одну перевести в другую, не задевая пяти данных больших окружностей (никакие три из которых не пересекаются в одной точке). Очевидно, точку можно перемещать в пределах области, на которые большие окружности делят сферу. Таким образом, число классов эквивалентности в два раза меньше числа частей, на которые большие окружности делят сферу (противоположным частям соответствует один класс, так как исходной большой окружности в двойственной задаче соответствуют две диаметрально противоположные точки).
Учтем, что n наших больших окружностей делят сферу на n² – n + 2 части. В частности, пять окружностей разобьют сферу на 22 части. А ответ, как показано выше, в два раза меньше.
б) см. а)

#геометрия #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #math

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/14133

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Physics Math Code from us


Telegram Physics.Math.Code
FROM USA