Telegram Group & Telegram Channel
🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics



tg-me.com/sqlhub/1904
Create:
Last Update:

🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1904

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Data Science SQL hub from pl


Telegram Data Science. SQL hub
FROM USA