Telegram Group & Telegram Channel
Compositional Regularization: Unexpected Obstacles In Enhancing Neural Network Generalization [2025]

Во многих соседних каналах писали про сенсацию - первая сгенерированная статья от AI Scientist прошла Peer Review на ICLR. Но вот что грустно - коллеги-авторы не осмеливаются рассказать про, собственно, саму статью.

Возьму эту задачу на себя. Но это не совсем обзор, скорее, пересказ статьи от лица автора, с сохранением формулировок. Отсебятины в пересказе нет.

Итак, рассмотрим понятие Compositional Generalization. Под ним подразумевается способность собирать новые комбинации из уже существующих компонент. Это мощнейший способ решать новые проблемы, и люди постоянно это используют.

Несмотря на успех нейросетей в целом, модели не всегда хорошо с такой генерализацией справляются. В данной статье для улучшения ситуации предлагается ввести явный Compositional Regularization.

Он будет штрафовать за отклонения от ожидаемых композиционных структур во внутренних представлениях нейросети с целью простимулировать модель формировать композиционные представления.

Итак, рассмотрим LSTM [модель из 2016 за авторством Ian Goodfellow]. В ней есть скрытое состояние h_t. Compositional Regularization считается как сумма L2-расстояний между каждыми двумя соседними h_{t} и h_{t+1}.

Она добавляется к обычному лоссу с каким-то весом и нужна для подталкивания модели к формированию аддитивных представлений, что является простейший формой композиционности.

Для экспериментов рассмотрим задачу подсчёта записанных в виде текста арифметических выражений, например, "3+4" или "7*2". Будем обучать LSTM на датасете из 1000 таких выражений и тестировать на отложенной выборке из 200.

Бейзлайн показывает 84% точности на тестовом датасете. Мы проверили профит нашей композиционной регуляризации. Перебрав разные значения её веса, мы обнаружили, что точность на тестовом датасете не увеличивается ни при каком значении этого веса. При этом, у нас получается уменьшить сам этот композиционный лосс. При увеличении веса добавки в какой-то момент точность на тесте падает.

Это показывает, что несмотря на то, что композиционная регуляризация стимулирует обучение композиционных представлений, это может конфликовать с основной функцией ошибки.

Во второй серии экспериментов мы проверяли модель на датасете из более сложных арифметических выражений, и в нём обе модели - без регуляризации и с ней - показали сильно более плохой результат. Эти результаты наталкивают на мысль о том, что одной такой регуляризации может быть недостаточно для решения проблем, создаваемых сложными композиционными структурами.

Хоть в данной работе у нас и не получилось добиться положительного результата с помощью такой регуляризации, на будущее мы предлагаем исследовать другие регуляризации, попробовать переопределить композиционность в контексте нейросетей, а также проводить тесты на более сложных данных.

==== Пересказ закончен ====

Хоть я и удивлён, что авторы из sakana.ai вообще не постыдились это всё опубликовать и похвастаться перед миром, очень рад, что у человечества появились инструменты для генерации таких работ. Вся система так называемых "научных конференций" - это рак в теле технологического прогресса, и чем быстрее они все загнутся под тяжестью вот такого вот говна, тем лучше.

Впрочем, они уже отчасти загнулись под тяжестью сгенерированного людьми говна, но отменять их никто не собирается - это отличный способ имитировать деятельность для начальников в пиджаках. Но теперь наблюдать за этим станет ещё интереснее.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/269
Create:
Last Update:

Compositional Regularization: Unexpected Obstacles In Enhancing Neural Network Generalization [2025]

Во многих соседних каналах писали про сенсацию - первая сгенерированная статья от AI Scientist прошла Peer Review на ICLR. Но вот что грустно - коллеги-авторы не осмеливаются рассказать про, собственно, саму статью.

Возьму эту задачу на себя. Но это не совсем обзор, скорее, пересказ статьи от лица автора, с сохранением формулировок. Отсебятины в пересказе нет.

Итак, рассмотрим понятие Compositional Generalization. Под ним подразумевается способность собирать новые комбинации из уже существующих компонент. Это мощнейший способ решать новые проблемы, и люди постоянно это используют.

Несмотря на успех нейросетей в целом, модели не всегда хорошо с такой генерализацией справляются. В данной статье для улучшения ситуации предлагается ввести явный Compositional Regularization.

Он будет штрафовать за отклонения от ожидаемых композиционных структур во внутренних представлениях нейросети с целью простимулировать модель формировать композиционные представления.

Итак, рассмотрим LSTM [модель из 2016 за авторством Ian Goodfellow]. В ней есть скрытое состояние h_t. Compositional Regularization считается как сумма L2-расстояний между каждыми двумя соседними h_{t} и h_{t+1}.

Она добавляется к обычному лоссу с каким-то весом и нужна для подталкивания модели к формированию аддитивных представлений, что является простейший формой композиционности.

Для экспериментов рассмотрим задачу подсчёта записанных в виде текста арифметических выражений, например, "3+4" или "7*2". Будем обучать LSTM на датасете из 1000 таких выражений и тестировать на отложенной выборке из 200.

Бейзлайн показывает 84% точности на тестовом датасете. Мы проверили профит нашей композиционной регуляризации. Перебрав разные значения её веса, мы обнаружили, что точность на тестовом датасете не увеличивается ни при каком значении этого веса. При этом, у нас получается уменьшить сам этот композиционный лосс. При увеличении веса добавки в какой-то момент точность на тесте падает.

Это показывает, что несмотря на то, что композиционная регуляризация стимулирует обучение композиционных представлений, это может конфликовать с основной функцией ошибки.

Во второй серии экспериментов мы проверяли модель на датасете из более сложных арифметических выражений, и в нём обе модели - без регуляризации и с ней - показали сильно более плохой результат. Эти результаты наталкивают на мысль о том, что одной такой регуляризации может быть недостаточно для решения проблем, создаваемых сложными композиционными структурами.

Хоть в данной работе у нас и не получилось добиться положительного результата с помощью такой регуляризации, на будущее мы предлагаем исследовать другие регуляризации, попробовать переопределить композиционность в контексте нейросетей, а также проводить тесты на более сложных данных.

==== Пересказ закончен ====

Хоть я и удивлён, что авторы из sakana.ai вообще не постыдились это всё опубликовать и похвастаться перед миром, очень рад, что у человечества появились инструменты для генерации таких работ. Вся система так называемых "научных конференций" - это рак в теле технологического прогресса, и чем быстрее они все загнутся под тяжестью вот такого вот говна, тем лучше.

Впрочем, они уже отчасти загнулись под тяжестью сгенерированного людьми говна, но отменять их никто не собирается - это отличный способ имитировать деятельность для начальников в пиджаках. Но теперь наблюдать за этим станет ещё интереснее.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/269

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Knowledge Accumulator from pl


Telegram Knowledge Accumulator
FROM USA