Telegram Group & Telegram Channel
🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется



tg-me.com/machinelearning_interview/1815
Create:
Last Update:

🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1815

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Machine learning Interview from pl


Telegram Machine learning Interview
FROM USA