Telegram Group & Telegram Channel
Параллельное Исполнение в Python с Помощью Модуля threading

В данном посте, вы узнаете, как использовать модуль threading для создания параллельных потоков выполнения и улучшения производительности ваших приложений.

threading позволяет создавать легковесные потоки, которые выполняются параллельно, ускоряя выполнение задач. Это особенно полезно в сценариях, где есть задачи, которые можно выполнить независимо друг от друга.

Пример:

import threading
import time

# Функция, которую будем выполнять в параллельных потоках
def print_numbers():
for i in range(5):
time.sleep(1) # Эмулируем длительную операцию
print(f"Thread {threading.current_thread().name}: {i}")

# Создаем два потока
thread1 = threading.Thread(target=print_numbers, name="Thread 1")
thread2 = threading.Thread(target=print_numbers, name="Thread 2")

# Запускаем потоки
thread1.start()
thread2.start()

# Ожидаем завершения потоков перед завершением программы
thread1.join()
thread2.join()

print("Главный поток выполнения завершен.")


В данном примере создаются два потока, каждый из которых выполняет функцию print_numbers, эмулируя длительную операцию с использованием time.sleep. Запуск потоков осуществляется с помощью метода start(), и главный поток ожидает их завершения с использованием метода join().

Модуль threading предоставляет удобные средства для работы с параллельными потоками в Python, что позволяет улучшить производительность приложений. Однако, следует быть внимательными при работе с потоками из-за потенциальных проблем с блокировками и синхронизацией данных. Попробуйте интегрировать threading в свой код и ускорьте выполнение задач! 💻

#python #threading
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/python_academy/1540
Create:
Last Update:

Параллельное Исполнение в Python с Помощью Модуля threading

В данном посте, вы узнаете, как использовать модуль threading для создания параллельных потоков выполнения и улучшения производительности ваших приложений.

threading позволяет создавать легковесные потоки, которые выполняются параллельно, ускоряя выполнение задач. Это особенно полезно в сценариях, где есть задачи, которые можно выполнить независимо друг от друга.

Пример:


import threading
import time

# Функция, которую будем выполнять в параллельных потоках
def print_numbers():
for i in range(5):
time.sleep(1) # Эмулируем длительную операцию
print(f"Thread {threading.current_thread().name}: {i}")

# Создаем два потока
thread1 = threading.Thread(target=print_numbers, name="Thread 1")
thread2 = threading.Thread(target=print_numbers, name="Thread 2")

# Запускаем потоки
thread1.start()
thread2.start()

# Ожидаем завершения потоков перед завершением программы
thread1.join()
thread2.join()

print("Главный поток выполнения завершен.")


В данном примере создаются два потока, каждый из которых выполняет функцию print_numbers, эмулируя длительную операцию с использованием time.sleep. Запуск потоков осуществляется с помощью метода start(), и главный поток ожидает их завершения с использованием метода join().

Модуль threading предоставляет удобные средства для работы с параллельными потоками в Python, что позволяет улучшить производительность приложений. Однако, следует быть внимательными при работе с потоками из-за потенциальных проблем с блокировками и синхронизацией данных. Попробуйте интегрировать threading в свой код и ускорьте выполнение задач! 💻

#python #threading

BY Python Academy


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_academy/1540

View MORE
Open in Telegram


Python Academy Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Python Academy from us


Telegram Python Academy
FROM USA