Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1697
Create:
Last Update:

✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark

BY Machine learning Interview








Share with your friend now:
tg-me.com/machinelearning_interview/1697

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Machine learning Interview from sa


Telegram Machine learning Interview
FROM USA