Telegram Group & Telegram Channel
قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/sa/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff



tg-me.com/nlp_stuff/312
Create:
Last Update:

قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/sa/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/312

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

NLP stuff from sa


Telegram NLP stuff
FROM USA