Telegram Group & Telegram Channel
Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/167
Create:
Last Update:

Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/167

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA