Telegram Group & Telegram Channel
Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/267
Create:
Last Update:

Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/267

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA