Telegram Group & Telegram Channel
Алгоритм Шора - революция в вычислениях или недоразумение?

Не буду вдаваться в подробности шифрования данных в интернете, так как не шарю. Для сегодняшнего поста нам достаточно знать, что используемые обычно алгоритмы в своей основе используют простой механизм: если взять два очень больших простых числа и умножить друг на друга, то по результату невозможно узнать исходные числа. Или возможно?

В попытке распутать клубок первым откровением стал следующий факт: не доказано, что разложение числа на простые множители не является P-задачей. Обезьяны всего лишь не додумались до классического алгоритма, умеющего делать это за логарифм. Зато господин Шор придумал, как её можно решить за логарифм на квантовом компьютере.

Допустим, мы ищем множители у N. Возьмём случайное число k. Оно, конечно, не является тем самым искомым числом, а значит, взаимно простое с N. Начнём возводить k во всё большую и большую степень и брать остаток от деления на N. К примеру, если N=15, k=2, то будет 2,4,8,1,2,….

Так вот, этот ряд обязательно рано или поздно зациклится, но, прежде чем вернуться в k, он должен за шаг до этого дойти до 1.
Значит, для какого-то p будет верно k^p = m*N+1. Следовательно (переносим 1 и раскладываем как разность квадратов):

(k^p/2 - 1)(k^p/2 + 1) = m * N

С вероятностью 37.5% (trust me bro) p будет чётным, а ещё одна скобка будет делиться на одно из исходных чисел, а другая на другое.

Таким образом, задача сводится к нахождению периода у последовательности остатков от деления на N степеней k. На обычных компах мы не умеем понять, когда этот ряд зациклится, и только в этот момент в игру вступает квантовый компьютер.

К сожалению, между сверхупрощением и 6-часовой лекцией я не смог найти золотой середины на просторах интернета. Сейчас я установлю рекорд по отуплению этого алгоритма.

В своём прошлом квантовом посте я рассказывал, что квантовый компьютер оперирует векторами в пространстве 2^N, где N - количество кубитов. Если задать вектор, «соответствующий» последовательности этих остатков и применить так называемый Quantum Fourier Transform, то вжух 💨 - и мы узнаем период этого ряда.

Как же меня совесть не мучает за такое объяснение? Всё просто.

Нахождение периода функции - это не задача перебора, которую квантовый компьютер решает магическим образом, «параллельно проверяя все варианты». Это очень сложная, но всего лишь последовательность операций над векторами.

Лично у меня возникло весьма жирное подозрение, что и классический алгоритм существует. Может, в P != NP я ещё готов поверить, но тут есть red flag, любезно найденный господином Шором.

Ссылки на материалы для интересующихся:
1) 20минутка
2) первая из 6 лекций, которые я не стал смотреть
3) пост от квантового чувачка, у него там еще свои ссылки

Надеюсь, ASI выложит в интернет алгоритм разложения для обычных компов. Чисто по ржать. Переход на постквантовую криптографию не спасёт, так как застрянет в бэклоге.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/288
Create:
Last Update:

Алгоритм Шора - революция в вычислениях или недоразумение?

Не буду вдаваться в подробности шифрования данных в интернете, так как не шарю. Для сегодняшнего поста нам достаточно знать, что используемые обычно алгоритмы в своей основе используют простой механизм: если взять два очень больших простых числа и умножить друг на друга, то по результату невозможно узнать исходные числа. Или возможно?

В попытке распутать клубок первым откровением стал следующий факт: не доказано, что разложение числа на простые множители не является P-задачей. Обезьяны всего лишь не додумались до классического алгоритма, умеющего делать это за логарифм. Зато господин Шор придумал, как её можно решить за логарифм на квантовом компьютере.

Допустим, мы ищем множители у N. Возьмём случайное число k. Оно, конечно, не является тем самым искомым числом, а значит, взаимно простое с N. Начнём возводить k во всё большую и большую степень и брать остаток от деления на N. К примеру, если N=15, k=2, то будет 2,4,8,1,2,….

Так вот, этот ряд обязательно рано или поздно зациклится, но, прежде чем вернуться в k, он должен за шаг до этого дойти до 1.
Значит, для какого-то p будет верно k^p = m*N+1. Следовательно (переносим 1 и раскладываем как разность квадратов):

(k^p/2 - 1)(k^p/2 + 1) = m * N

С вероятностью 37.5% (trust me bro) p будет чётным, а ещё одна скобка будет делиться на одно из исходных чисел, а другая на другое.

Таким образом, задача сводится к нахождению периода у последовательности остатков от деления на N степеней k. На обычных компах мы не умеем понять, когда этот ряд зациклится, и только в этот момент в игру вступает квантовый компьютер.

К сожалению, между сверхупрощением и 6-часовой лекцией я не смог найти золотой середины на просторах интернета. Сейчас я установлю рекорд по отуплению этого алгоритма.

В своём прошлом квантовом посте я рассказывал, что квантовый компьютер оперирует векторами в пространстве 2^N, где N - количество кубитов. Если задать вектор, «соответствующий» последовательности этих остатков и применить так называемый Quantum Fourier Transform, то вжух 💨 - и мы узнаем период этого ряда.

Как же меня совесть не мучает за такое объяснение? Всё просто.

Нахождение периода функции - это не задача перебора, которую квантовый компьютер решает магическим образом, «параллельно проверяя все варианты». Это очень сложная, но всего лишь последовательность операций над векторами.

Лично у меня возникло весьма жирное подозрение, что и классический алгоритм существует. Может, в P != NP я ещё готов поверить, но тут есть red flag, любезно найденный господином Шором.

Ссылки на материалы для интересующихся:
1) 20минутка
2) первая из 6 лекций, которые я не стал смотреть
3) пост от квантового чувачка, у него там еще свои ссылки

Надеюсь, ASI выложит в интернет алгоритм разложения для обычных компов. Чисто по ржать. Переход на постквантовую криптографию не спасёт, так как застрянет в бэклоге.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/288

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA