Telegram Group & Telegram Channel
Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator



tg-me.com/knowledge_accumulator/76
Create:
Last Update:

Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/76

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA