Telegram Group & Telegram Channel
RL в квадрате [2016] - учим RL-алгоритм с помощью RL-алгоритма

Я в последнее время часто думаю о том, о чём говорил в посте выше - как нам обучить, а не спроектировать, алгоритм, который быстро обучается? Ближе всего из разделов ML к этому вопросу находится Meta Learning, и сегодня я бы хотел рассказать про одну из известных статей в этой области.

Чего мы хотим добиться? Мы хотим получить систему, которая быстро аккумулирует опыт и начинает круто работать на новой задаче. В отличие от этого, в классическом RL нас просто волнует производительность в конкретной среде.

Как ни странно, на самом деле между этими постановками достаточно маленькая разница.

1) При обучении мета-алгоритма у нас есть некое семейство задач, из которого мы сэмплируем при обучении. При этом, на самом деле, это семейство можно воспринимать как одну задачу, но со случайной скрытой различающейся динамикой.
2) Для того, чтобы перейти от производительности к обучаемости, нам надо всего лишь стереть грани между эпизодами. В этом случае мы будем учиться оптимизировать не только награду в течение текущего эпизода, но и в будущих эпизодах, то есть мы учимся в том числе и исследовать среду ради выгоды в следующих попытках. А в качестве входа алгоритм будет обрабатывать не только историю траектории в текущей попытке, но и весь полученный в прошлом опыт. Новые границы "эпизодов" теперь будут лежать между разными задачами.

В итоге весь подход статьи сводится к одному изменению поверх обычного RL - к стиранию границ между эпизодами. Эта абсурдная простота лично мне давит на мозг. Это заставляет задуматься - что такое на самом деле обучаемость? Как нам добиться именно адаптируемости к новому, а не учиться делать вообще всё одной моделью? Как именно человеческий мозг пришёл к этому? У меня есть всего лишь догадки, но про них как-нибудь в другой раз...

@knowledge_accumulator



tg-me.com/knowledge_accumulator/77
Create:
Last Update:

RL в квадрате [2016] - учим RL-алгоритм с помощью RL-алгоритма

Я в последнее время часто думаю о том, о чём говорил в посте выше - как нам обучить, а не спроектировать, алгоритм, который быстро обучается? Ближе всего из разделов ML к этому вопросу находится Meta Learning, и сегодня я бы хотел рассказать про одну из известных статей в этой области.

Чего мы хотим добиться? Мы хотим получить систему, которая быстро аккумулирует опыт и начинает круто работать на новой задаче. В отличие от этого, в классическом RL нас просто волнует производительность в конкретной среде.

Как ни странно, на самом деле между этими постановками достаточно маленькая разница.

1) При обучении мета-алгоритма у нас есть некое семейство задач, из которого мы сэмплируем при обучении. При этом, на самом деле, это семейство можно воспринимать как одну задачу, но со случайной скрытой различающейся динамикой.
2) Для того, чтобы перейти от производительности к обучаемости, нам надо всего лишь стереть грани между эпизодами. В этом случае мы будем учиться оптимизировать не только награду в течение текущего эпизода, но и в будущих эпизодах, то есть мы учимся в том числе и исследовать среду ради выгоды в следующих попытках. А в качестве входа алгоритм будет обрабатывать не только историю траектории в текущей попытке, но и весь полученный в прошлом опыт. Новые границы "эпизодов" теперь будут лежать между разными задачами.

В итоге весь подход статьи сводится к одному изменению поверх обычного RL - к стиранию границ между эпизодами. Эта абсурдная простота лично мне давит на мозг. Это заставляет задуматься - что такое на самом деле обучаемость? Как нам добиться именно адаптируемости к новому, а не учиться делать вообще всё одной моделью? Как именно человеческий мозг пришёл к этому? У меня есть всего лишь догадки, но про них как-нибудь в другой раз...

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/77

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA