Telegram Group & Telegram Channel
Forwarded from Machinelearning
⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1655
Create:
Last Update:

⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml

BY Machine learning Interview







Share with your friend now:
tg-me.com/machinelearning_interview/1655

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Machine learning Interview from sg


Telegram Machine learning Interview
FROM USA