Telegram Group & Telegram Channel
🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview



tg-me.com/machinelearning_interview/1788
Create:
Last Update:

🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1788

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Machine learning Interview from sg


Telegram Machine learning Interview
FROM USA